Complexes of Ligands providing Endogenous Bridges. Part 7.1 The Concurrent Formation of 1 + 1 and $2+2$ Oxa-azamacrocycles; The X-Ray Crystal Structure of an Exocyclic Dinuclear Copper(I) Complex \dagger

Neil A. Bailey,* David E. Fenton,* Mark G. Williams, and Derek J. Winter Department of Chemistry, The University, Sheffield S3 7HF

Abstract

A series of oxa-azamacrocycles derived from the non-template condensation of 1,3-diamino-2propanol and acyclic dialdehydes followed by in situ reduction with tetrahydroborate has been prepared. Fast atom bombardment mass spectrometry (f.a.b.m.s.) showed the presence of $1+1$ and $2+2$ condensates and these were separated using medium pressure liquid chromatography. Metal complexes of the $1+1$ macrocycles (HL) were prepared and characterised. Mononuclear complexes, $\mathrm{M}(\mathrm{HL}) \mathrm{X}_{2}$, were recovered for $\mathrm{M}=\mathrm{Co}^{\prime \prime}, \mathrm{Ni}^{\prime \prime}, \mathrm{Zn}^{\prime \prime}, \mathrm{Cd}^{\prime \prime}$, or $\mathrm{Hg}^{\prime \prime}$ and $\mathrm{X}=\mathrm{Cl}$ or Br and homo-dinuclear complexes, $\mathrm{Cu}_{2} \mathrm{LCl}_{2}(\mathrm{OH}) \cdot n \mathrm{H}_{2} \mathrm{O}$, for CuCl_{2}. The salts $\mathrm{M}\left(\mathrm{ClO}_{4}\right)_{2}$ and $\mathrm{M}\left(\mathrm{NO}_{3}\right)_{2}$ ($\mathrm{M}=\mathrm{Co}^{\prime \prime}, \mathrm{Ni}^{11}, \mathrm{Cu}^{\prime \prime}, \mathrm{Zn}^{\prime \prime}$, or $\mathrm{Cd}^{\prime \prime}$) gave complexes [M(L)X] and f.a.b.m.s. provided evidence for oligomer formation. Mononuclear complexes were recovered from the reaction of one $2+2$ macrocycle with $\mathrm{M}\left(\mathrm{ClO}_{4}\right)_{2}\left(\mathrm{M}=\mathrm{Co}^{\prime \prime}, \mathrm{Ni}^{\prime \prime}\right.$, or $\left.\mathrm{Zn}^{11}\right)$ and CdCl_{2}, whereas a homodinuclear complex was obtained for $\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2}$. The crystal structure of $\left[\mathrm{Cu}_{2}\left(\mu-\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3}\right)\right.$ -$\left.\left(\mu-\mathrm{O}_{2} \mathrm{CPh}\right)\left(\mathrm{OH}_{2}\right) \mathrm{Cl}_{2}\right] \cdot 2 \mathrm{PhCH}_{2} \mathrm{OH}$ reveals a dimeric structure in which the dinuclear units are linked by chloride bridges. The compound crystallises in monoclinic space group $P 2_{1} / c\left(C_{2}^{5}\right.$, no. 14) with unit-cell dimensions $a=13.460(15), b=14.608(16), c=17.096(8) \AA, \beta=96.227(9)^{\circ}$, and $Z=2$; 3678 independent reflections with $/ / \sigma(/)>3.0$ gave $R=0.0532$.

Di-imine $(1+1)$ and tetraimine $(2+2)$ Schiff-base macrocycles have generally been prepared, via the condensation of polyfunctional $1, n$-alkanediamines with heterocyclic dicarbonyls using metal template reactions, as the corresponding metal complex. ${ }^{2}$ Employment of appropriate metal ions such as $\mathrm{Mn}^{\text {II }}$ or $\mathrm{Pb}^{\text {II }}$ as the template allows isolation of the reduced metal-free oxa-azamacrocycle on reduction of the Schiff-base complex with $\mathrm{NaBH}_{4}{ }^{3}$ The reaction of the dialdehydes (1) with $1, n$-alkanediamines therefore leads to di-imine Schiffbase macrocycles (2) which may be reduced in situ to the corresponding diaminomacrocycles. During the course of an investigation into the complexing properties of macrocyclic ligands bearing functional groups which could lead to the provision of endogenous bridges in dinuclear metal complexes ${ }^{4}$ we have prepared a series of reduced $1+1$ oxa-azamacrocycles (HL) derived from the condensation of (1) and 1,3-diamino-2propanol without resort to template techniques.

The synthesis and characterisation of the macrocycles and their complexes with halides, perchlorates, and nitrates of $\mathrm{Co}^{\mathrm{II}}$, $\mathrm{Ni}^{\mathrm{II}}, \mathrm{Cu}^{\mathrm{II}}, \mathrm{Zn}^{\mathrm{II}}, \mathrm{Cd}^{\mathrm{II}}$, and $\mathrm{Hg}^{\mathrm{II}}$ are discussed and provide a cautionary tale concerning the characterisation of macrocyclic ligands. The crystal structure of an exocyclic dinuclear copper(II) complex derived from $\mathrm{HL}\left(\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2}\right)$ is also described.

Results and Discussion

The Oxa-azamacrocycles.-The macrocycles were prepared according to the pathway shown in the Scheme. The eight compounds were isolated as solids and characterised by elemental analysis, i.r., ${ }^{1} \mathrm{H}$ n.m.r. (220 MHz), and electronimpact mass spectrometry (e.i.m.s.). They were assigned as pure $1+1$ oxa-azamacrocycles and complexation reactions were carried out with metal perchlorate salts. Due to the general insolubility of the products, fast atom bombardment mass spectrometry (f.a.b.m.s.) was used to help in their characterisation and revealed the presence of high-molecular-weight

$1+1$

$2+2$

(1)

(2)
species with mass numbers well in excess of the anticipated molecular weights. Consequently it was necessary to reinvestigate the nature of the precursor macrocycles as, although these peaks may have been derived from associative processes, it was also possible that $2+2$-derived products were present.

Analysis of the macrocycles using f.a.b.m.s. revealed that when $\mathrm{R}=\left(\mathrm{CH}_{2}\right)_{3},\left(\mathrm{CH}_{2}\right)_{4}$, and $2,6-\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}$ the peaks at highest mass corresponded to $2+2$ macrocycle formation,

[^0]

Scheme. HL: $\mathrm{R}=\left(\mathrm{CH}_{2}\right)_{n}$ where $n=2\left(\mathrm{HL}^{1}\right), 3\left(\mathrm{HL}^{2}\right), 4\left(\mathrm{HL}^{3}\right), 5\left(\mathrm{HL}^{4}\right)$, or $6\left(\mathrm{HL}^{5}\right),\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NH}\left(\mathrm{CH}_{2}\right)_{2}\left(\mathrm{HL}^{6}\right), 1,3-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{HL}^{7}\right)$, or $2,6-\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}-$ (HL^{8})

Table 1. Proton chemical shifts for HL^{2} and $\mathrm{H}_{2} \mathrm{~L}^{9}$

HL^{2}			$\mathrm{H}_{2} \mathrm{~L}^{9}$		
δ			δ		
7.24(t)	H_{F}	(2 H)	7.22t	H_{F}	(4 H)
7.19(d)	H_{D}	(2 H)	7.15 d	$\mathrm{H}_{\text {D }}$	(4 H)
6.95(d)	H_{G}	(2 H)	6.88 t	H_{E}	(4 H)
6.94(t)	H_{E}	(2 H)	6.87 d	H_{G}	(4 H)
4.27(m)	H_{1}	(4 H)	4.17 m	H_{1}	(8 H)
3.76(m)	H_{c}	(4 H)	3.6	H_{C}	
3.71(t)	$\mathrm{H}_{\text {A }}$	(1 H)	3.8 m	$\mathrm{H}_{\text {A }}$	$(10 \mathrm{H})$
2.66(m)	H_{B}	(4 H)	2.40 m	H_{B}	(8 H)
2.30 (q)	H_{K}	(2 H)	2.30 m	H_{K}	(4 H)

Coupling constants (Hz) for $\mathrm{HL}^{2}: J\left(\mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right)=5.0, J\left(\mathrm{H}^{\mathrm{A}} \mathrm{H}^{\mathrm{B}^{\prime}}\right)=4.8$, $J\left(\mathrm{H}^{\mathrm{B}} \mathrm{H}^{\mathrm{B}^{\prime}}\right)=12.2, J\left(\mathrm{H}^{\mathrm{C}} \mathbf{H}^{\mathrm{C}^{\prime}}\right)=12.9, J\left(\mathrm{H}^{\mathrm{D}} \mathrm{H}^{\mathrm{E}}\right)=7.5, J\left(\mathrm{H}^{\mathrm{D}} \mathrm{H}^{\mathrm{F}}\right)=1.5$, $J\left(\mathbf{H}^{\mathrm{E}} \mathbf{H}^{\mathrm{F}}\right)=7.9, J\left(\mathrm{H}^{\mathrm{E}} \mathrm{H}^{\mathrm{G}}\right)=1.0, J\left(\mathbf{H}^{\mathrm{F}} \mathbf{H}^{\mathrm{G}}\right)=7.9$, and $J\left(\mathrm{H}^{\mathrm{I}} \mathbf{H}^{\mathrm{K}}\right)=5.7$.
indicating that the original product was actually a mixture of $1+1$ and $2+2$ macrocycles. The $2+2$ macrocycle was also found with $\mathrm{R}=\left(\mathrm{CH}_{2}\right)_{6}$ together with a highest mass peak $(\mathrm{m} / \mathrm{z}$ 1153) assigned to a $3+3$ species; a related $3+3$ Schiff-base macrocycle has been synthesised by employing lanthanum nitrate as the templating device in the reaction of 2,6 diacetylpyridine and 1,3-diamino-2-hydroxypropane. ${ }^{1}$

No procedure is given in the literature for separating such a mixture and so a method was sought. A number of chromatographic techniques were assessed, ranging from silica gel gravity columns to gel permeation chromatography, and found to be ineffective, probably because of strong hydrogen-bonding interactions between the macrocycle and the binding sites available on the columns used. However, when a small amount of ammonia ($0.1-0.5 \%$) was added to the eluant (methanol) it was found possible to separate the macrocycles using mediumpressure liquid chromatography (m.p.l.c.) and a silica gel column. The $1+1: 2+2$ ratios detected were 8.5 for $\mathrm{R}=$
$\left(\mathrm{CH}_{2}\right)_{3}, 12$ for $\left(\mathrm{CH}_{2}\right)_{4} 4.4$ for $\left(\mathrm{CH}_{2}\right)_{6}$ and >10 for $2,6-\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}$ and this allowed for separation of the pure macrocycles for $\mathrm{R}=\left(\mathrm{CH}_{2}\right)_{n}(n=3,4$, and 6$)$. In all cases tailing occurred; this was most acute for the $2,6-\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}$ system and together with a solubility problem eased somewhat by use of a mixed methanolchloroform eluant, prevented isolation of the pure $2+2$ species in this case.

The ${ }^{1} \mathrm{H}$ n.m.r. spectra ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) of the pure $1+1$ and $2+2$ compounds show very similar chemical shifts (Table 1); there is a greater complexity of splitting patterns in the $2+2$ series due to the greater conformational freedom and the possible presence of diastereoisomers. Representative chemical shift data are given for the macrocycles derived from $\mathrm{R}=\left(\mathrm{CH}_{2}\right)_{3}$

An interesting observation in the f.a.b.m.s. reveals the potential of the macrocycles for metal-ion discrimination. The m.s. of the $2+2$ macrocycles show peaks at $M+132$ that are not detected with the $1+1$ macrocycles. These are attributed to abstraction of Cs^{+}from the CsI used as a calibrant (the matrix is 3-nitrobenzyl alcohol), the difference in behaviour being governed by the more compatible cation-ring cavity fit available with the $2+2$ species. Furthermore peaks of mass $M+23$ are detected for both series of macrocycles. These have probably arisen from retention of trace amounts of Na^{+}used in the reduction step. In this case mononuclear complexes would be available for the smaller macrocycles and dinuclear complexes for the larger macrocycles.

Complexes of the $1+1$ Macrocycles with MCl_{2} and MBr_{2}.The $1+1$ macrocycles were treated with $\mathrm{MCl}_{2}(\mathrm{M}=\mathrm{Co}, \mathrm{Ni}$, $\mathrm{Cu}, \mathrm{Cd}, \mathrm{Zn}$, or Hg$)$ and $\mathrm{MBr}_{2}(\mathrm{M}=\mathrm{Co}, \mathrm{Ni}, \mathrm{Cu}$, or Cd$)$ to give precipitates which were generally found to be insoluble in common organic solvents. The complexes formed were characterised by elemental analysis, i.r. and f.a.b.m.s. spectra (Table 2). Mononuclear complexes were recovered for MX_{2} ($\mathrm{X}=\mathrm{Cl}$ or $\mathrm{Br} ; \mathrm{M}=\mathrm{Co}, \mathrm{Ni}, \mathrm{Zn}, \mathrm{Cd}$, or Hg) and for the copper(II) complexes where $\mathrm{R}=\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NH}\left(\mathrm{CH}_{2}\right)_{2}$ and $2,6-\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}$ whereas homodinuclear complexes of copper(II) were found using the remaining ligands. In the mononuclear complexes the stretching frequency of the ligand hydroxy-group is observed as a broad band in the region $3400-3500 \mathrm{~cm}^{-1}$; this is associated with OH stretching bands from any water of crystallisation. In the homodinuclear complexes this band is replaced by a sharp medium-intensity absorption at $c a .3600 \mathrm{~cm}^{-1}$ assigned to the OH stretch of an exogeneous bridging hydroxyl group. ${ }^{5}$

The f.a.b.m.s. of the majority of the complexes gave parent peaks corresponding to $[\mathrm{M}(\mathrm{HL}) \mathrm{X}]^{+}$; the m.s. also commonly show peaks corresponding to [ML] ${ }^{+}$($\mathrm{L}=$ the deprotonated ligand) and to $[\mathrm{HL}]^{+}$. The exceptions to this statement are the homodinuclear complexes for which the highest peak corresponds to $\left[\mathrm{Cu}_{2}(\mathrm{~L}) \mathrm{X}\right]^{+}$and the mercury complexes in which the parent peak corresponds to $[\mathrm{HL}]^{+}$. A plausible explanation for the latter observation is that exocyclic complexation of the mercury(II) has occurred leading to an oligomeric linear array such has been found in the crystal structure of the HgI_{2} complex of a related macrocyclic ligand. ${ }^{6}$ This would lead to the facile recovery of free macrocycle on bombardment during the m.s. experiment.

The homodinuclear copper(iI) complexes are proposed as having the structure (I). Attempts to grow crystals of these species were unsuccessful, however the complex $\mathrm{Cu}_{2} \mathrm{~L}^{1} \mathrm{Cl}_{2}(\mathrm{OH})$ was recovered from benzyl alcohol and the structure solved. This not only confirmed the exocyclic homodinuclear nature of the complex but also showed that the exogenous hydroxyl group had been replaced by a benzoate anion. At first it was thought that this had arisen from oxidation of the benzyl alcohol but a g.c. assay of the solvent revealed 0.27% benzoic acid in the solvent and so it is proposed that the dinuclear unit

(1)
of the complex scavenges this benzoic acid, the ligand being sufficiently flexible to allow replacement of the singly bridging hydroxyl group by the μ-1,3-benzoate.

The molecular structure of $\left[\left\{\mathrm{Cu}_{2} \mathrm{~L}^{1}\left(\mu-\mathrm{O}_{2} \mathrm{CPh}\right)\left(\mathrm{OH}_{2}\right) \mathrm{Cl}_{2}\right\}_{2}\right]$. $2 \mathrm{PhCH}_{2} \mathrm{OH}$ is shown in the Figure with atomic co-ordinates listed in Table 3 and bond lengths and angles in Tables 4 and 5. It comprises a centrosymmetric tetranuclear complex in which each of two pairs of copper atoms is co-ordinated exocyclically by a macrocyclic ligand via two amine nitrogen atoms (one to each copper), and by an oxygen of a deprotonated pendant hydroxyl group which bridges the two coppers; the pair of copper atoms is also bridged by a benzoate anion. The coordination sphere of the 'outer' copper of each pair is completed
by a terminal chlorine and, more remotely, by a water ligand. The 'inner' two centrosymmetrically related copper atoms (one from each pair) are asymmetrically bridged by a pair of chlorine ligands. The $\mathrm{Cu} \ldots \mathrm{Cu}$ distances are 3.489 and $3.391 \AA$ the latter being between symmetry-related, dichloride-bridged copper atoms.

Each of the independent copper atoms has a five-co-ordinate geometry. The co-ordination polyhedron of $\mathrm{Cu}(2)$ is closely square-based pyramidal with the copper displaced out of the plane towards a remote axial water ligand. The co-ordination geometry about $\mathrm{Cu}(1)$ is also square-based pyramidal, but here the basal plane is more 'tetrahedrally twisted,' and the axial site is occupied by the second bridging chlorine at a much greater distance than to the symmetry-related chlorine in the basal plane. Hence both co-ordination polyhedra illustrate the distorted geometries expected in Jahn-Teller distorted environments. Consequent on this molecular geometry, the four copper atoms lie in an approximate straight line, with a 43° bend at $\mathrm{Cu}(1)$ and alternate asymmetric bridges.

The conformation of the macrocycle is such that the diamine fragment is 'inverted' in order to provide exocyclic donor sets. The three six-membered rings of the macrocycle and of the bridging benzoate are each planar [root mean square (r.m.s.) deviations $0.005,0.007$, and $0.004 \AA$]; those of the two disorder components of the solvent benzyl alcohol were constrained to $D_{6 h}$ symmetry.

Table 2. Macrocyclic complexes of metal halides

Complex	M.p. $\left({ }^{\circ} \mathrm{C}\right)$	Mass spectral parent ion (m / z)	Analysis (\%)*				I.r. bands (cm^{-1})	
			C	H	N	Cl or Br	Secondary amine $\mathrm{N}-\mathrm{H}$ stretch	Aromatic and pyridine-ring stretches
$\mathrm{Ni}\left(\mathrm{HL}^{1}\right) \mathrm{Cl}_{2}$ (Light blue)	> 280	$\begin{gathered} 421 \\ {\left[\mathrm{Ni}\left(\mathrm{HL}^{1}\right) \mathrm{Cl}\right]^{+}} \end{gathered}$	$\begin{gathered} 49.7 \\ (49.8) \end{gathered}$	$\begin{gathered} 5.3 \\ (5.3) \end{gathered}$	$\begin{gathered} 6.2 \\ (6.1) \end{gathered}$		3255 (sp)	1 605(sp), 1 585(sp)
$\begin{aligned} & \mathrm{Cd}\left(\mathrm{HL}^{1}\right) \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O} \\ & (\text { White }) \end{aligned}$	$\begin{gathered} 270 \\ \text { (decomp.) } \end{gathered}$	$\begin{gathered} 457 \\ {\left[\mathrm{Cd}\left(\mathrm{HL}^{2}\right) \mathrm{Cl}\right]^{+}} \end{gathered}$	$\begin{gathered} 42.5 \\ (43.1) \end{gathered}$	$\begin{gathered} 5.3 \\ (5.0) \end{gathered}$	$\begin{gathered} 5.4 \\ (5.3) \end{gathered}$		$\begin{aligned} & 3310 \mathrm{w}, 3290(\mathrm{sh}) \\ & 3240(\mathrm{sh}) \end{aligned}$	$\begin{aligned} & 1605 \mathrm{~s}(\mathrm{sp}), 1595(\mathrm{sp}) \\ & 1580(\mathrm{sh}) \end{aligned}$
$\underset{(\text { White })}{\mathrm{Hg}\left(\mathrm{HL}^{1}\right) \mathrm{Cl}_{2}}$	179-180	$\left[\mathbf{H L}^{1}+\mathbf{H}\right]^{+}$	$\begin{gathered} 38.5 \\ (38.0) \end{gathered}$	$\begin{gathered} 4.0 \\ (4.0) \end{gathered}$	$\begin{gathered} 4.3 \\ (4.7) \end{gathered}$	$\begin{gathered} 12.1 \\ (11.8) \end{gathered}$	3 270(sp)	$\begin{aligned} & 1600 \mathrm{~s}(\mathrm{sp}), 1590(\mathrm{sp}) \\ & 1580 \mathrm{w} \end{aligned}$
$\begin{gathered} \mathrm{Cu}_{2} \mathrm{~L}^{1} \mathrm{Cl}_{2}(\mathrm{OH}) \\ \text { (Turquoise) } \end{gathered}$	189	$\begin{array}{r} 489 \\ {\left[\mathrm{Cu}_{2} \mathrm{~L}^{1} \mathrm{Cl}\right]^{+}} \end{array}$	$\begin{gathered} 42.4 \\ (42.1) \end{gathered}$	$\begin{gathered} 4.7 \\ (4.4) \end{gathered}$	$\begin{gathered} 5.4 \\ (5.2) \end{gathered}$	$\begin{gathered} 12.9 \\ (13.1) \end{gathered}$	3280 (sp), 3250	$1600 \mathrm{~s}(\mathrm{sp}), 1585 \mathrm{w}(\mathrm{sp})$
$\underset{\text { (Green) }}{\mathrm{Cd}\left(\mathrm{HL}^{1}\right) \mathrm{Br}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}}$	>270	$\begin{gathered} 466 \\ {\left[\mathrm{Co}\left(\mathrm{HL}^{1}\right) \mathrm{Br}\right]^{+}} \end{gathered}$	$\begin{gathered} 39.1 \\ (39.1) \end{gathered}$	$\begin{gathered} 4.9 \\ (4.8) \end{gathered}$	$\begin{gathered} 4.9 \\ (4.8) \end{gathered}$		3240 (br)	1600 (sp), 1590 (sh)
$\begin{aligned} & \mathrm{Cu}_{2}\left(\mathrm{~L}^{1}\right) \mathrm{Br}_{2}(\mathrm{OH}) \cdot \mathrm{H}_{2} \mathrm{O} \\ & \quad \text { (Black-green) } \end{aligned}$	172-173	$\begin{gathered} 533 \\ {\left[\mathrm{Cu}_{2} \mathrm{~L}^{1} \mathrm{Br}\right]^{+}} \end{gathered}$	$\begin{gathered} 35.0 \\ (35.1) \end{gathered}$	$\begin{gathered} 3.8 \\ (4.0) \end{gathered}$	$\begin{gathered} 4.1 \\ (4.3) \end{gathered}$	$\begin{gathered} 24.9 \\ (24.6) \end{gathered}$	3260 (br)	$1600 \mathrm{~s}(\mathrm{sp}), 1580 \mathrm{w}(\mathrm{sp})$
$\mathrm{Ni}\left(\mathrm{HL}^{2}\right) \mathrm{Cl}_{2} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$ (Pale green)	>260	$\begin{gathered} 435 \\ {\left[\mathrm{Ni}\left(\mathrm{HL}^{2}\right) \mathrm{Cl}\right]^{+}} \end{gathered}$	$\begin{gathered} 48.1 \\ (48.1) \end{gathered}$	$\begin{gathered} 5.8 \\ (5.8) \end{gathered}$	$\begin{gathered} 5.5 \\ (5.6) \end{gathered}$	$\begin{gathered} 13.8 \\ (14.2) \end{gathered}$	3 250(sp)	$1605(\mathrm{sp}), 1590$ (sp)
$\mathrm{Co}\left(\mathrm{HL}^{2}\right) \mathrm{Cl}_{2} \cdot \mathrm{MeOH}$	246-248	$\begin{gathered} 436 \\ {\left[\mathrm{Co}\left(\mathrm{HL}^{2}\right) \mathrm{Cl}\right]^{+}} \end{gathered}$	$\begin{gathered} 50.4 \\ (50.0) \end{gathered}$	$\begin{gathered} 6.1 \\ (6.0) \end{gathered}$	$\begin{gathered} 5.5 \\ (5.5) \end{gathered}$		3280 (sh)	$1605 \mathrm{~s}(\mathrm{sp}), 1590(\mathrm{sp})$
$\mathrm{Cd}\left(\mathrm{HL}^{2}\right) \mathrm{Cl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Off-white)	>280	$\begin{gathered} 489 \\ {\left[\mathrm{Cd}\left(\mathrm{HL}^{2}\right) \mathrm{Cl}\right]^{+}} \end{gathered}$	$\begin{gathered} 43.0 \\ (42.8) \end{gathered}$	$\begin{gathered} 5.5 \\ (5.4) \end{gathered}$	$\begin{gathered} 5.0 \\ (5.0) \end{gathered}$	$\begin{gathered} 14.2 \\ (12.6) \end{gathered}$	$3300 \mathrm{w}, 3$ 280(sh)	1600 (sp), 1590 (sh)
$\underset{(\text { White })}{\mathrm{Hg}\left(\mathrm{HL}^{2}\right) \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}}$	107	$\left[\mathrm{HL}^{2}+\mathrm{H}\right]^{+}$	$\begin{gathered} 38.2 \\ (38.0) \end{gathered}$	$\begin{gathered} 5.0 \\ (4.5) \end{gathered}$	$\begin{gathered} 4.5 \\ (4.4) \end{gathered}$		3280 (br)	$1605 \mathrm{~s}(\mathrm{sp}), 1595(\mathrm{sh})$
$\begin{gathered} \mathrm{Zn}\left(\mathrm{HL}^{2}\right) \mathrm{Cl}_{2} \\ (\text { White }) \end{gathered}$	184	$\begin{gathered} 441 \\ {\left[\mathrm{Zn}\left(\mathrm{HL}^{2}\right) \mathrm{Cl}\right]^{+}} \end{gathered}$	$\begin{gathered} 50.1 \\ (50.2) \end{gathered}$	$\begin{gathered} 5.4 \\ (5.8) \end{gathered}$	$\begin{gathered} 5.8 \\ (5.9) \end{gathered}$	$\begin{gathered} 14.0 \\ (14.8) \end{gathered}$	3275 (sp)	$1600 \mathrm{~s}(\mathrm{sp}), 1590 \mathrm{w}(\mathrm{sp})$
$\mathrm{Cu}_{2} \mathrm{~L}^{2} \mathrm{Br}_{2}(\mathrm{OH}) \cdot \mathrm{H}_{2} \mathrm{O}$ (Olive green)	179-181	$\begin{gathered} 519 \\ {\left[\mathrm{Cu}_{2} \mathrm{~L}^{2} \mathrm{Br}\right]^{+}} \end{gathered}$	$\begin{gathered} 37.0 \\ (37.3) \end{gathered}$	$\begin{gathered} 4.2 \\ (4.4) \end{gathered}$	$\begin{gathered} 4.2 \\ (4.3) \end{gathered}$	$\begin{gathered} 25.2 \\ (24.8) \end{gathered}$	3250 (br)	$1600 \mathrm{~s}(\mathrm{sp}), 1590(\mathrm{sh})$
$\mathrm{Co}\left(\mathrm{HL}^{2}\right) \mathrm{Br}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ (Grey-blue)	>270	$\left[\mathrm{CoL}^{2}\right]^{+}$	$\begin{gathered} 41.8 \\ (41.5) \end{gathered}$	$\begin{gathered} 4.9 \\ (4.9) \end{gathered}$	$\begin{gathered} 5.0 \\ (4.8) \end{gathered}$		3300 (sh)	1600 (sp), 1590 (sh)
$\mathrm{Ni}\left(\mathrm{HL}^{2}\right) \mathrm{Br}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ (Greeny white)	>280	$\begin{gathered} 480 \\ {\left[\mathrm{Ni}\left(\mathrm{HL}^{2}\right) \mathrm{Br}\right]^{+}} \end{gathered}$	$\begin{gathered} 42.0 \\ (41.5) \end{gathered}$	$\begin{gathered} 5.0 \\ (4.9) \end{gathered}$	$\begin{gathered} 4.7 \\ (4.8) \end{gathered}$	$\begin{gathered} 29.0 \\ (27.6) \end{gathered}$	Obscured	$1600(\mathrm{sp}), 1595(\mathrm{sh})$
$\begin{aligned} & \mathrm{Cd}\left(\mathrm{HL}^{2}\right) \mathrm{Br}_{2} \\ & (\text { Off-white) } \end{aligned}$	>280	$\left[\mathrm{CdL}^{2}\right]^{+}$	$\begin{gathered} 38.7 \\ (39.1) \end{gathered}$	$\begin{gathered} 4.0 \\ (4.3) \end{gathered}$	$\begin{gathered} 4.4 \\ (4.6) \end{gathered}$		3280 (br)	$1600 \mathrm{~s}(\mathrm{sp}), 1590$ (sh)
$\begin{aligned} & \mathrm{Co}\left(\mathrm{HL}^{3}\right) \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O} \\ & \text { (Pale Blue) } \end{aligned}$	230	$\begin{gathered} 450 \\ {\left[\mathrm{Co}\left(\mathrm{HL}^{3}\right) \mathrm{Cl}\right]^{+}} \end{gathered}$	$\begin{gathered} 49.9 \\ (50.0) \end{gathered}$	$\begin{gathered} 5.7 \\ (6.0) \end{gathered}$	$\begin{gathered} 5.2 \\ (5.5) \end{gathered}$		3290	$1605 \mathrm{~s}(\mathrm{sp}), 1590 \mathrm{w}(\mathrm{sp})$
$\underset{(\text { White })}{\mathrm{Cd}\left(\mathrm{HL}^{3}\right) \mathrm{Cl}_{2}}$	> 280	$\begin{gathered} 503 \\ {\left[\mathrm{Cd}\left(\mathrm{HL}^{3}\right) \mathrm{Cl}\right]^{+}} \end{gathered}$	$\begin{gathered} 46.6 \\ (46.7) \end{gathered}$	$\begin{gathered} 5.0 \\ (5.2) \end{gathered}$	$\begin{gathered} 5.0 \\ (5.2) \end{gathered}$	$\begin{gathered} 14.3 \\ (13.1) \end{gathered}$	3310 (sp), 3 265(sh)	$1600 \mathrm{~s}(\mathrm{sp}), 1590 \mathrm{w}(\mathrm{sp})$
$\underset{\text { (White) }}{\mathrm{Hg}\left(\mathrm{HL}^{3}\right) \mathrm{Cl}_{2}}$	156-157	$\begin{gathered} 357 \\ {\left[\mathrm{HL}^{3}+\mathrm{H}\right]^{+}} \end{gathered}$	$\begin{gathered} 39.8 \\ (40.2) \end{gathered}$	$\begin{gathered} 4.5 \\ (4.5) \end{gathered}$	$\begin{gathered} 4.2 \\ (4.5) \end{gathered}$		3275 (sp), 3255 (sp)	$1605 \mathrm{~s}(\mathrm{sp}), 1585 \mathrm{w}(\mathrm{sp})$
$\begin{aligned} & \mathrm{Zn}\left(\mathrm{HL}^{3}\right) \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O} \\ & (\text { White }) \end{aligned}$	147-148	$\begin{gathered} 455 \\ {\left[\mathrm{Zn}\left(\mathrm{HL}^{3}\right) \mathrm{Cl}\right]^{+}} \end{gathered}$	$\begin{gathered} 49.3 \\ (49.4) \end{gathered}$	$\begin{gathered} 5.9 \\ (5.9) \end{gathered}$	$\begin{gathered} 5.3 \\ (5.5) \end{gathered}$	$\begin{gathered} 13.8 \\ (13.9) \end{gathered}$	3255 (sp), 3245 (sh)	$1605 \mathrm{~s}(\mathrm{sp}), 1590 \mathrm{w}(\mathrm{sp})$

Table 2 (continued)

Complex	M.p. (${ }^{\circ} \mathrm{C}$)	Mass spectral parent ion (m / z)	Analysis (\%)*				1.r. bands (cm^{-1})	
			C	H	N	Cl or Br	$\mathrm{N}-\mathrm{H}$ stretch	pyridine-ring stretches
$\mathrm{Cu}_{2} \mathrm{~L}^{3} \mathrm{Cl}_{2}(\mathrm{OH})$ (Dark green)	185-186	$\begin{gathered} 517 \\ {\left[\mathrm{Cu}_{2} \mathrm{~L}^{3} \mathrm{Cl}\right]^{+}} \end{gathered}$	$\begin{gathered} 44.8 \\ (44.2) \end{gathered}$	$\begin{gathered} 5.2 \\ (5.0) \end{gathered}$	$\begin{gathered} 5.2 \\ (4.9) \end{gathered}$	$\begin{gathered} 12.0 \\ (12.4) \end{gathered}$	$3280 w$	1605 (sp), $1590 \mathrm{w}(\mathrm{sp})$
$\begin{aligned} & \mathrm{Cd}\left(\mathrm{HL}^{4}\right) \mathrm{Cl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O} \\ & \text { (Off-white) } \end{aligned}$	>280	$\left[\mathrm{CdL}^{4}\right]^{+}$	$\begin{gathered} 44.0 \\ (44.8) \end{gathered}$	$\begin{gathered} 5.7 \\ (5.8) \end{gathered}$	$\begin{gathered} 4.5 \\ (4.7) \end{gathered}$	$\begin{gathered} 14.0 \\ (12.0) \end{gathered}$	3280 (sh)	$1600 \mathrm{~s}(\mathrm{sp})$
$\underset{\text { (Off-white) }}{\mathrm{Hg}\left(\mathrm{HL}^{4}\right) \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}}$	$\begin{gathered} 94 \\ \text { (decomp.) } \end{gathered}$	$\begin{gathered} 371 \\ {\left[\mathrm{HL}^{4}+\mathrm{H}\right]^{+}} \end{gathered}$	$\begin{gathered} 39.4 \\ (40.0) \end{gathered}$	$\begin{gathered} 4.8 \\ (4.9) \end{gathered}$	$\begin{gathered} 3.9 \\ (4.2) \end{gathered}$	$\begin{gathered} 12.5 \\ (10.7) \end{gathered}$	3260 w (sh)	$1605 \mathrm{~s}(\mathrm{sp}), 1595 \mathrm{w}(\mathrm{sp})$
$\mathrm{Co}\left(\mathrm{HL}^{4}\right) \mathrm{Br}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ (Brown-green)	>260	$\left[\mathrm{CoL}^{4}\right]^{+}$	$\begin{gathered} 42.9 \\ (43.5) \end{gathered}$	$\begin{gathered} 5.1 \\ (5.3) \end{gathered}$	$\begin{gathered} 4.8 \\ (4.6) \end{gathered}$		3200 (sh)	$1600 \mathrm{~s}, 1595$ (sh)
$\underset{\text { (Off-white) }}{\mathrm{Hg}\left(\mathrm{HL}^{5}\right) \mathrm{Cl}_{2}}$	169-170	$\begin{gathered} 385 \\ {\left[\mathrm{HL}^{5}+\mathrm{H}\right]^{+}} \end{gathered}$	$\begin{gathered} 41.9 \\ (42.1) \end{gathered}$	$\begin{gathered} 4.9 \\ (4.9) \end{gathered}$	$\begin{gathered} 4.4 \\ (4.3) \end{gathered}$		3260 (sp), 3190 (sh)	$\begin{aligned} & 1605 \mathrm{~s}(\mathrm{sp}), 1590(\mathrm{sp}), \\ & 1580(\mathrm{sp}) \end{aligned}$
$\begin{aligned} & \mathrm{Cd}\left(\mathrm{HL}^{7}\right) \mathrm{Cl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O} \\ & \text { (Off-white) } \end{aligned}$	>280	$\left[\mathrm{CdL}^{7}\right]^{533}$	$\begin{gathered} 49.9 \\ (49.7) \end{gathered}$	$\begin{gathered} 5.9 \\ (5.6) \end{gathered}$	$\begin{gathered} 4.0 \\ (4.3) \end{gathered}$		3250 (sh)	$1600(\mathrm{sp}), 1590 \mathrm{w}(\mathrm{sh})$
$\underset{\text { (White) }}{\mathrm{Hg}\left(\mathrm{HL}^{7}\right) \mathrm{Cl}_{2}}$	192-193	$\begin{gathered} 433 \\ {\left[\mathrm{HL}^{7}+\mathrm{H}\right]^{+}} \end{gathered}$	$\begin{gathered} 46.2 \\ (46.1) \end{gathered}$	$\begin{gathered} 4.6 \\ (4.6) \end{gathered}$	$\begin{gathered} 3.9 \\ (4.0) \end{gathered}$		$3285 s(s p)$	$1605 \mathrm{~s}(\mathrm{sp}), 1590(\mathrm{sp})$
$\begin{aligned} & \mathrm{Cu}_{2} \mathrm{~L}^{7} \mathrm{Cl}_{2}(\mathrm{OH}) \cdot \mathrm{H}_{2} \mathrm{O} \\ & \quad \text { (Pale-green) } \end{aligned}$	173-174	$\begin{gathered} 593 \\ {\left[\mathrm{Cu}_{2} \mathrm{~L}^{7} \mathrm{Cl}\right]^{+}} \end{gathered}$	$\begin{gathered} 49.2 \\ (48.9) \end{gathered}$	$\begin{gathered} 5.2 \\ (5.0) \end{gathered}$	$\begin{gathered} 4.4 \\ (4.2) \end{gathered}$	$\begin{gathered} 11.0 \\ (10.7) \end{gathered}$	3280 w	1600 s(sp), $1590 \mathrm{w}(\mathrm{sp})$
$\mathrm{Ni}\left(\mathrm{HL}^{6}\right) \mathrm{Cl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Olive green)	>260	$\begin{gathered} 465 \\ {\left[\mathrm{Ni}\left(\mathrm{HL}^{6}\right) \mathrm{Cl}\right]^{+}} \end{gathered}$	$\begin{gathered} 47.0 \\ (46.9) \end{gathered}$	$\begin{gathered} 5.9 \\ (6.0) \end{gathered}$	$\begin{gathered} 5.3 \\ (5.2) \end{gathered}$	$\begin{gathered} 13.0 \\ (13.2) \end{gathered}$	3290 (sp)	$1600(\mathrm{sp}), 1595(\mathrm{sh})$
$\mathrm{Co}\left(\mathrm{HL}^{6}\right) \mathrm{Cl}_{2}$ (Blue-green)	220-222	$\begin{gathered} 467 \\ {\left[\mathrm{Co}\left(\mathrm{HL}^{6}\right) \mathrm{Cl}\right]^{+}} \end{gathered}$	$\begin{gathered} 49.8 \\ (50.2) \end{gathered}$	$\begin{gathered} 5.6 \\ (5.6) \end{gathered}$	$\begin{gathered} 5.6 \\ (5.6) \end{gathered}$	$\begin{gathered} 14.7 \\ (14.1) \end{gathered}$	3250 (sp), 3230 sw	1600 s(sp), $1595(\mathrm{sh})$
$\begin{gathered} \mathrm{Cd}\left(\mathrm{HL}^{6}\right) \mathrm{Cl}_{2} \\ \text { (White) } \end{gathered}$	>260	$\left[\mathrm{CdL}^{6}\right]^{+}$	$\begin{gathered} 44.9 \\ (45.4) \end{gathered}$	$\begin{gathered} 5.2 \\ (5.1) \end{gathered}$	$\begin{gathered} 4.8 \\ (5.0) \end{gathered}$		3270 (br)	$1600(\mathrm{sp}), 1590 \mathrm{w}(\mathrm{sp})$
$\underset{\text { (White) }}{\mathrm{Hg}\left(\mathrm{HL}^{6}\right) \mathrm{Cl}_{2}}$	145-146	$\begin{gathered} 373 \\ {\left[\mathrm{HL}^{6}+\mathrm{H}\right]^{+}} \end{gathered}$	$\begin{gathered} 39.4 \\ (39.2) \end{gathered}$	$\begin{gathered} 4.2 \\ (4.4) \end{gathered}$	$\begin{gathered} 4.0 \\ (4.3) \end{gathered}$	$\begin{gathered} 11.2 \\ (11.0) \end{gathered}$	3285 (sp)	$1605(\mathrm{sp}), 1595(\mathrm{sp})$
$\begin{aligned} & \mathrm{Zn}\left(\mathrm{HL}^{6}\right) \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O} \\ & \quad(\text { White }) \end{aligned}$	168-169	$\begin{gathered} 471 \\ {\left[\mathrm{ZnHL}^{6} \mathrm{Cl}\right]^{+}} \end{gathered}$	$\begin{gathered} 48.0 \\ (47.9) \end{gathered}$	$\begin{gathered} 5.8 \\ (5.7) \end{gathered}$	$\begin{gathered} 5.1 \\ (5.3) \end{gathered}$	$\begin{gathered} 13.6 \\ (13.5) \end{gathered}$	$3255(\mathrm{sp}), 3245(\mathrm{sh})$	$1605 \mathrm{~s}(\mathrm{sp}), 1590 \mathrm{w}(\mathrm{sp})$
$\mathrm{Cu}\left(\mathrm{HL}^{6}\right) \mathrm{Cl}_{2}$ (Pale green)	194-195	$\left[\mathrm{CuL}^{6}\right]^{+}$	$\begin{gathered} 49.7 \\ (49.8) \end{gathered}$	$\begin{gathered} 5.4 \\ (5.6) \end{gathered}$	$\begin{gathered} 5.1 \\ (5.5) \end{gathered}$	$\begin{gathered} 13.8 \\ (14.0) \end{gathered}$	3260	$1600(\mathrm{sp}), 1590 \mathrm{w}(\mathrm{sp})$
$\begin{gathered} \mathrm{Co}\left(\mathrm{HL}^{6}\right) \mathrm{Br}_{2} \\ \text { Lilac) } \end{gathered}$	228-230	$\begin{gathered} 510 \\ {\left[\mathrm{Co}\left(\mathrm{HL}^{6}\right) \mathrm{Br}\right]^{+}} \end{gathered}$	$\begin{gathered} 43.1 \\ (72.7) \end{gathered}$	$\begin{gathered} 5.1 \\ (4.8) \end{gathered}$	$\begin{gathered} 4.8 \\ (4.7) \end{gathered}$		3270 (sp), 3240 w (sh)	1600 s(sp), 1595w(sh)
$\underset{\text { (White) }}{\mathrm{Hg}\left(\mathrm{HL}^{8}\right) \mathrm{Cl}_{2}}$	224-226	$\begin{gathered} 406 \\ {\left[\mathrm{HL}^{8}+\mathrm{H}\right]^{+}} \end{gathered}$	$\begin{gathered} 43.0 \\ (42.6) \end{gathered}$	$\begin{gathered} 3.8 \\ (4.0) \end{gathered}$	$\begin{gathered} 5.8 \\ (6.2) \end{gathered}$		3300 (sh)	$\begin{aligned} & 1600,1590(\mathrm{sh}) \\ & 1580(\mathrm{sh}) \end{aligned}$
$\underset{\text { (White) }}{\mathrm{Zn}\left(\mathrm{HL}^{8}\right) \mathrm{Cl}_{2}}$	$\begin{gathered} 214 \\ \text { (decomp.) } \end{gathered}$	$\begin{gathered} 505 \\ {\left[\mathrm{Zn}\left(\mathrm{HL}^{8}\right) \mathrm{Cl}\right]^{+}} \end{gathered}$	$\begin{gathered} 53.4 \\ (53.2) \end{gathered}$	$\begin{gathered} 5.5 \\ (5.0) \end{gathered}$	$\begin{gathered} 7.4 \\ (7.8) \end{gathered}$	$\begin{gathered} 15.1 \\ (13.1) \end{gathered}$	3280 (sp)	$\begin{gathered} 1605(\mathrm{sh}), \quad 1600, \\ 1590(\mathrm{sh}), 1580 \end{gathered}$
$\begin{aligned} & \mathrm{Cu}\left(\mathrm{HL}^{8}\right) \mathrm{Cl}_{2} \\ & \text { (Lime green) } \end{aligned}$	162	$\begin{gathered} 503 \\ {\left[\mathrm{Cu}\left(\mathrm{HL}^{8}\right) \mathrm{Cl}\right]^{+}} \end{gathered}$	$\begin{gathered} 52.9 \\ (53.4) \end{gathered}$	$\begin{gathered} 5.2 \\ (5.0) \end{gathered}$	$\begin{gathered} 8.0 \\ (7.8) \end{gathered}$		3240	$\begin{aligned} & 1605(\mathrm{sp}), 1590(\mathrm{sh}), \\ & 1580(\mathrm{sh}) \end{aligned}$

$\mathrm{br}=\mathrm{broad}, \mathrm{v}=$ very, $\mathrm{s}=$ strong; $\mathrm{sp}=\operatorname{sharp}, \mathrm{sh}=$ shoulder, and $\mathrm{w}=$ weak. ${ }^{*}$ Calculated values given in parentheses.

The two halves of the tetranuclear complex are additionally held together by two, weak, symmetry-related hydrogen bonds between the secondary amine $\mathrm{N}(1)$ of the macrocycle and an oxygen of the bridging benzoate ligand $\mathrm{O}\left(4^{1}\right)(\mathrm{O} \cdots \mathrm{N} 3.267$, $\mathrm{O} \cdot \cdots \mathrm{H} 2.39 \AA$). The other secondary amine $\mathrm{N}(2)$ engages in a weak intermolecular hydrogen bond to chlorine $\mathrm{Cl}\left(2^{\mathrm{III}}\right)$ in an inversion-related molecule (through $0.5,0,0)(\mathrm{Cl} \cdots \mathrm{N} 3.424$, $\mathrm{Cl} \cdots \mathrm{H} 2.64 \AA$). The co-ordinated water $\mathrm{O}(7)$ also interacts weakly with the same inversion related $\mathrm{Cl}\left(2^{\text {III }}\right)$ at a distance of $3.142 \AA$. The lower-occupancy component of the solvent benzyl alcohol molecule lies close to $\mathrm{Cu}(1)$ at a distance $\mathrm{Cu}(1) \cdots \mathrm{O}(8)$ of $2.64 \AA$, trans to the more distant bringing chlorine, and the aromatic ring 'blocks' the sixth co-ordination site of $\mathrm{Cu}(2)$ at a range of about $3.6 \AA$. The higher-occupancy component of benzyl alcohol seems only to form a hydrogen-bonded interaction with a screw-related chlorine $\mathrm{Cl}\left(2^{\mathrm{II}}\right)$ (operation $1-x$, $0.5+y, 0.5-z)$ at a distance $\mathrm{O}(6) \cdots \mathrm{Cl}\left(2^{\mathrm{II}}\right)$ of $3.264 \AA$.

Double bridging involving endogenous alkoxide groups and exogenous groups is a well known phenomenon in dinuclear copper(II) complexes of a range of acyclic ligands. ${ }^{7}$ The exocyclic mode of co-ordination in the present case affords comparison with acyclic complexes in which the use of flexible ligands allows for the incorporation of single-atom, $\mu-1,2$ and μ 1,3 exogenous bridges and the $\mathrm{Cu} \cdots \mathrm{Cu}$ separation lies in the range $2.90-3.20 \AA$ for single-atom bridges and is greater than
$3.30 \AA$ for multiatom bridges. ${ }^{8}$ The closest analogue μ-(benzo-ato- $\left.O: O^{\prime}\right)-\left[N N^{\prime}\right.$-(2-hydroxy-1,3-propanediyl)bis(salicylideneiminato) $(3-)\left(N O^{2} O: N^{\prime} O^{2} O^{\prime}\right]$ dicopper(II $)^{9}$ has a $\mathrm{Cu} \cdots \mathrm{Cu}$ separation of $3.482 \AA$ and a Cu -benzoate- Cu angle of 132.7°.

The $\mathrm{Cu} \cdots \mathrm{Cu}$ separation for the dimer building chlorobridged unit is $3.391 \AA$ and the bridging $\mathrm{Cu}-\mathrm{Cl}$ lengths are inequivalent (2.274 and $2.863 \AA$). The $\mathrm{Cu}-\mathrm{Cl}-\mathrm{Cu}$ angle is 81.6° and both this angle and the $\mathrm{Cu} \ldots \mathrm{Cu}$ separations are slightly smaller than the recorded range for comparable chloro-bridged environments. ${ }^{10}$ The reference compounds for this comparison are $\left[\left\{\mathrm{Cu}\left(\mathrm{Me}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NHMe}\right) \mathrm{Cl}_{2}\right\}_{2}\right]$ having a $\mathrm{Cu}-\mathrm{Cl}-\mathrm{Cu}$ angle of $84.4^{\circ},{ }^{10}$ and $\left[\left\{\mathrm{Cu}(\text { pan }) \mathrm{Cl}_{2}\right\}_{2}\right][$ pan $=1$-(2-pyridylazo)-2-naphtholate] which has a $\mathrm{Cu} \cdots \mathrm{Cu}$ separation of $3.416 \AA .{ }^{11}$

The mononuclear complexes did not involve deprotonation of the ligand and gave in general broad bands in the diffuse reflectance spectra. Due to the sparing solubility it was only possible to obtain ${ }^{1} \mathrm{H}$ n.m.r. spectra in $\mathrm{CD}_{3} \mathrm{CN}$ solution for two zinc complexes, $\mathrm{Zn}\left(\mathrm{HL}^{3}\right) \mathrm{Cl}_{2}$ and $\mathrm{Zn}\left(\mathrm{HL}^{6}\right) \mathrm{Cl}_{2}$. The parameters are given in Table 6 together with the changes in chemical shift between the free and complexed ligand. Large changes are observed in the chemical shifts of the methylene groups adjacent to the nitrogen donor atoms; this is in agreement with work carried out by Lindoy et al. ${ }^{12}$ on related macrocyclic systems. It is suggested that the nitrogen atoms of the respective macrocycles are co-ordinated to the zinc. In the present study larger

Figure. The molecular structure of the tetranuclear complex $\left[\left\{\mathrm{Cu}_{2} \mathrm{~L}^{1}\left(\mu-\mathrm{O}_{2} \mathrm{CPh}\right)\left(\mathrm{OH}_{2}\right) \mathrm{Cl}_{2}\right\}_{2}\right] \cdot 2 \mathrm{PhCH}_{2} \mathrm{OH}$

Table 3. Atomic co-ordinates $\left(\times 10^{4}\right)$ for $\left.\left[\mathrm{Cu}_{2} \mathrm{~L}^{1}\left(\mu-\mathrm{O}_{2} \mathrm{CPh}\right)\left(\mathrm{OH}_{2}\right) \mathrm{Cl}_{2}\right\}_{2}\right] \cdot 2 \mathrm{PhCH}_{2} \mathrm{OH}$

Atom	x	y	z	$A t o m$	x	z	
$\mathrm{Cu}(1)$	$906(1)$	$666(1)$	$474(1)$	$\mathrm{C}(14)$	$434(7)$	$4673(5)$	$-1167(5)$
$\mathrm{Cu}(2)$	$3509(1)$	$539(1)$	$693(1)$	$\mathrm{C}(15)$	$4494(6)$	$2272(5)$	$342(4)$
$\mathrm{Cl}(1)$	$-668(1)$	$552(1)$	$845(1)$	$\mathrm{C}(16)$	$3181(5)$	$1640(5)$	$-646(4)$
$\mathrm{Cl}(2)$	$5066(1)$	$175(2)$	$1257(1)$	$\mathrm{C}(17)$	$2270(5)$	$1766(4)$	$-221(4)$
$\mathrm{O}(1)$	$2228(3)$	$1028(3)$	$315(2)$	$\mathrm{C}(18)$	$1331(5)$	$1759(4)$	$-783(4)$
$\mathrm{O}(2)$	$3554(4)$	$3903(4)$	$-134(3)$	$\mathrm{C}(19)$	$162(6)$	$2526(5)$	$30(4)$
$\mathrm{O}(3)$	$1440(4)$	$3985(4)$	$-49(4)$	$\mathrm{C}(20)$	$2125(5)$	$-549(5)$	$1556(4)$
$\mathrm{O}(4)$	$1322(3)$	$-373(3)$	$1167(3)$	$\mathrm{C}(21)$	$2115(5)$	$-1166(4)$	$2267(4)$
$\mathrm{O}(5)$	$2964(4)$	$-244(4)$	$1446(3)$	$\mathrm{C}(22)$	$2985(7)$	$-1386(7)$	$2694(5)$
$\mathrm{O}(6)$	$4553(7)$	$3900(6)$	$2171(5)$	$\mathrm{C}(23)$	$2987(8)$	$-1927(8)$	$3360(6)$
$\mathrm{O}(7)$	$3185(5)$	$-723(4)$	$-272(4)$	$\mathrm{C}(24)$	$2126(8)$	$-2241(7)$	$3582(5)$
$\mathrm{O}(8)$	$848(11)$	$1622(12)$	$1779(9)$	$\mathrm{C}(25)$	$1262(7)$	$-2035(6)$	$3161(5)$
$\mathrm{N}(1)$	$477(4)$	$1652(4)$	$-324(3)$	$\mathrm{C}(26)$	$1246(6)$	$-1487(5)$	$2500(4)$
$\mathrm{N}(2)$	$4039(4)$	$1436(4)$	$-58(3)$	$\mathrm{C}(27)$	$2569(5)$	$3290(7)$	$2109(6)$
$\mathrm{C}(1)$	$4409(6)$	$3726(6)$	$-455(5)$	$\mathrm{C}(28)$	$1579(5)$	$2995(7)$	$2071(6)$
$\mathrm{C}(2)$	$4902(6)$	$2929(6)$	$-229(4)$	$\mathrm{C}(29)$	$1367(5)$	$2087(7)$	$2242(6)$
$\mathrm{C}(3)$	$5765(6)$	$2722(7)$	$-539(5)$	$\mathrm{C}(30)$	$2145(5)$	$1473(7)$	$2451(6)$
$\mathrm{C}(4)$	$6159(7)$	$3287(8)$	$-1079(6)$	$\mathrm{C}(31)$	$3134(5)$	$1768(7)$	$2489(6)$
$\mathrm{C}(5)$	$5663(8)$	$4082(7)$	$-1289(6)$	$\mathrm{C}(32)$	$3347(5)$	$2676(7)$	$2318(6)$
$\mathrm{C}(6)$	$4802(7)$	$4316(7)$	$-993(6)$	$\mathrm{C}(33)$	$4434(7)$	$2990(8)$	$2429(9)$
$\mathrm{C}(7)$	$2959(8)$	$4674(6)$	$-408(6)$	$\mathrm{C}(34)$	$2186(11)$	$3175(11)$	$2171(11)$
$\mathrm{C}(8)$	$2128(8)$	$4738(6)$	$72(6)$	$\mathrm{C}(35)$	$2947(11)$	$3823(11)$	$2166(11)$
$\mathrm{C}(9)$	$620(6)$	$4006(5)$	$-594(5)$	$\mathrm{C}(36)$	$3944(11)$	$3549(11)$	$2289(11)$
$\mathrm{C}(10)$	$-42(6)$	$3290(5)$	$-550(4)$	$\mathrm{C}(37)$	$4181(11)$	$2628(11)$	$2417(11)$
$\mathrm{C}(11)$	$-883(7)$	$3248(5)$	$-1080(5)$	$\mathrm{C}(38)$	$3420(11)$	$1980(11)$	$2421(11)$
$\mathrm{C}(12)$	$-1069(9)$	$3911(7)$	$-1673(6)$	$\mathrm{C}(39)$	$2423(11)$	$2254(11)$	$2298(11)$
$\mathrm{C}(13)$	$-393(8)$	$4612(7)$	$-1703(6)$	$\mathrm{C}(40)$	$1627(14)$	$1543(15)$	$2413(12)$

Atoms $\mathrm{O}(6), \mathrm{C}(27)-\mathrm{C}(33)$ comprise the benzyl alcohol with occupancy $0.64, \mathrm{O}(8), \mathrm{C}(34)-\mathrm{C}(40)$ the benzyl alcohol with occupancy 0.36 .
shifts are found for the protons adjacent to the ether and hydroxyl oxygen atoms than were found previously. This may indicate that the co-ordination sphere of the zinc ion may also include one, or more, of these oxygen atoms.

Complexes of the $1+1$ Macrocycles with $\mathrm{M}\left(\mathrm{ClO}_{4}\right)_{2}$ and $\mathrm{M}\left(\mathrm{NO}_{3}\right)_{2}$.- The macrocycles form $1: 1$ complexes with the perchlorate salts of $\mathrm{Co}^{\mathrm{II}}, \mathrm{Ni}^{\mathrm{II}}, \mathrm{Cu}^{\mathrm{II}}$, and $\mathrm{Zn}^{\mathrm{II}}$ in which deprotonation of the macrocyclic ligand has occurred. The complexes

Table 4. Bond lengths (\AA)

$\mathrm{Cu}(1)-\mathrm{Cl}(1)$	$2.282(3)$	$\mathrm{Cu}(1)-\mathrm{O}(1)$	$1.904(5)$
$\mathrm{Cu}(1)-\mathrm{O}(4)$	$1.969(5)$	$\mathrm{Cu}(1)-\mathrm{N}(1)$	$2.024(5)$
$\mathrm{Cu}(1)-\mathrm{Cl}\left(1^{\mathrm{I}}\right)$	$2.863(3)$	$\mathrm{Cu}(2)-\mathrm{Cl}(2)$	$2.274(3)$
$\mathrm{Cu}(2)-\mathrm{O}(1)$	$1.912(4)$	$\mathrm{Cu}(2)-\mathrm{O}(5)$	$1.926(6)$
$\mathrm{Cu}(2)-\mathrm{O}(7)$	2.481	$\mathrm{Cu}(2)-\mathrm{N}(2)$	$2.018(6)$
$\mathrm{O}(1)-\mathrm{C}(17)$	$1.421(8)$	$\mathrm{O}(2)-\mathrm{C}(1)$	$1.351(11)$
$\mathrm{O}(2)-\mathrm{C}(7)$	$1.431(11)$	$\mathrm{O}(3)-\mathrm{C}(8)$	$1.439(11)$
$\mathrm{O}(3)-\mathrm{C}(9)$	$1.365(10)$	$\mathrm{O}(4)-\mathrm{C}(20)$	$1.233(8)$
$\mathrm{O}(5)-\mathrm{C}(20)$	$1.247(8)$	$\mathrm{O}(6)-\mathrm{C}(33)$	$1.415(15)$
$\mathrm{O}(8)-\mathrm{C}(40)$	$1.428(24)$	$\mathrm{N}(1)-\mathrm{C}(18)$	$1.469(8)$
$\mathrm{N}(1)-\mathrm{C}(19)$	$1.493(9)$	$\mathrm{N}(2)-\mathrm{C}(15)$	$1.498(9)$
$\mathrm{N}(2)-\mathrm{C}(16)$	$1.477(8)$	$\mathrm{C}(1)-\mathrm{C}(2)$	$1.374(12)$
$\mathrm{C}(1)-\mathrm{C}(6)$	$1.406(13)$	$\mathrm{C}(2)-\mathrm{C}(3)$	$1.361(12)$
$\mathrm{C}(2)-\mathrm{C}(15)$	$1.514(11)$	$\mathrm{C}(3)-\mathrm{C}(4)$	$1.387(14)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.367(15)$	$\mathrm{C}(5)-\mathrm{C}(6)$	$1.358(15)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.461(16)$	$\mathrm{C}(9)-\mathrm{C}(10)$	$1.381(11)$
$\mathrm{C}(9)-\mathrm{C}(14)$	$1.385(12)$	$\mathrm{C}(10)-\mathrm{C}(11)$	$1.373(11)$
$\mathrm{C}(10)-\mathrm{C}(19)$	$1.498(10)$	$\mathrm{C}(11)-\mathrm{C}(12)$	$1.406(13)$
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.374(15)$	$\mathrm{C}(13)-\mathrm{C}(14)$	$1.365(14)$
$\mathrm{C}(16)-\mathrm{C}(17)$	$1.503(9)$	$\mathrm{C}(17)-\mathrm{C}(18)$	$1.503(8)$
$\mathrm{C}(20)-\mathrm{C}(21)$	$1.515(9)$	$\mathrm{C}(21)-\mathrm{C}(22)$	$1.350(11)$
$\mathrm{C}(21)-\mathrm{C}(26)$	$1.359(11)$	$\mathrm{C}(22)-\mathrm{C}(23)$	$1.386(15)$
$\mathrm{C}(23)-\mathrm{C}(24)$	$1.339(16)$	$\mathrm{C}(24)-\mathrm{C}(25)$	$1.333(14)$
$\mathrm{C}(25)-\mathrm{C}(26)$	$1.383(11)$	$\mathrm{C}(32)-\mathrm{C}(33)$	$1.525(12)$
$\mathrm{C}(39)-\mathrm{C}(40)$	$1.519(26)$	$\mathrm{C}-\mathrm{C}(\mathrm{phenyl})$	1.395
$\mathrm{Cu}(1) \cdots \mathrm{Cu}\left(1^{1}\right)$	3.391	$\mathrm{Cu}(2) \cdots \mathrm{Cu}(1)$	3.489
$\mathrm{Cu}(1) \cdots \mathrm{O}(8)$	2.64	$\mathrm{O}(6) \cdots \mathrm{Cl}\left(2^{\text {II }}\right)$	3.264
$\mathrm{O}\left(4^{\mathrm{I}}\right) \cdots \mathrm{N}(1)$	3.267	$\mathrm{O}\left(4^{1}\right) \cdots \mathrm{H}(1)$	2.39
$\mathrm{Cl}\left(2^{\mathrm{III}}\right) \cdots \mathrm{N}(2)$	3.424	$\mathrm{Cl}\left(2^{\mathrm{III})} \cdots \mathrm{H}(2)\right.$	2.64
$\mathrm{Cl}\left(2^{\mathrm{III}) \cdots \mathrm{O}(7)} \mathrm{3.142}\right.$			

I Inversion related by the operation $-x,-y,-z$; II screw-related by $1-x, 0.5+y, 0.5-z$; III inversion related by $1-x,-y,-z$.

\square

(II)
were characterised by elemental analysis, i.r. spectra and f.a.b. mass spectra (Tables 7 and 8). The i.r. spectra show NH stretching frequencies in the region $3200-3300 \mathrm{~cm}^{-1}$ and the free-ligand OH stretch is absent. The vibrations of the perchlorate group appear at $c a .1100$ and $625 \mathrm{~cm}^{-1}$. For the majority of the complexes these are single absorptions characteristic of non-co-ordinated anions; ${ }^{13}$ in a limited number of cases there is a discernible splitting of the bands which may reflect a lowered symmetry due to co-ordination of the anion to the metal or arise from crystal-packing or hydrogen-bonding effects.

The f.a.b. mass spectra all show peaks corresponding to $[\mathrm{ML}]^{+}$. However, it is also possible to find $\left[\mathrm{ML}\left(\mathrm{ClO}_{4}\right)\right]^{+}$ suggesting that under the conditions of the experiment reprotonation of the ligand has occurred; the former peak is of greater

Table 5. Bond angles $\left({ }^{\circ}\right)$

$\mathrm{Cl}(1)-\mathrm{Cu}(1)-\mathrm{O}(1)$	165.9(2)	$\mathrm{Cl}(1)-\mathrm{Cu}(1)-\mathrm{O}(4)$	89.3(2)
$\mathrm{O}(1)-\mathrm{Cu}(1)-\mathrm{O}(4)$	95.2(2)	$\mathrm{Cl}(1)-\mathrm{Cu}(1)-\mathrm{N}(1)$	92.0(2)
$\mathrm{O}(1)-\mathrm{Cu}(1)-\mathrm{N}(1)$	84.8(2)	$\mathrm{O}(4)-\mathrm{Cu}(1)-\mathrm{N}(1)$	174.7(2)
$\mathrm{Cl}(1)-\mathrm{Cu}(1)-\mathrm{Cl}\left(1^{1}\right)$	98.4(1)	$\mathrm{O}(1)-\mathrm{Cu}(1)-\mathrm{Cl}\left(1^{1}\right)$	95.0(1)
$\mathrm{O}(4)-\mathrm{Cu}(1)-\mathrm{Cl}\left(1^{1}\right)$	89.7(1)	$\mathrm{N}(1)-\mathrm{Cu}(1)-\mathrm{Cl}\left(1^{1}\right)$	85.0(2)
$\mathrm{Cl}(2)-\mathrm{Cu}(2)-\mathrm{O}(1)$	170.6(2)	$\mathrm{Cl}(2)-\mathrm{Cu}(2)-\mathrm{O}(5)$	88.7(2)
$\mathrm{O}(1)-\mathrm{Cu}(2)-\mathrm{O}(5)$	93.0(2)	$\mathrm{Cl}(2)-\mathrm{Cu}(2)-\mathrm{N}(2)$	92.8(2)
$\mathrm{O}(1)-\mathrm{Cu}(2)-\mathrm{N}(2)$	84.9(2)	$\mathrm{O}(5)-\mathrm{Cu}(2)-\mathrm{N}(2)$	175.9(2)
$\mathrm{O}(7)-\mathrm{Cu}(2)-\mathrm{Cl}(2)$	101.3	$\mathrm{O}(7)-\mathrm{Cu}(2)-\mathrm{O}(1)$	88.1
$\mathrm{O}(7)-\mathrm{Cu}(2)-\mathrm{O}(5)$	87.2	$\mathrm{O}(7)-\mathrm{Cu}(2)-\mathrm{N}(2)$	96.2
$\mathrm{Cu}(1)-\mathrm{Cl}(1)-\mathrm{Cu}\left(1^{\mathrm{I}}\right)$	81.6(1)	$\mathrm{Cu}(1)-\mathrm{O}(1)-\mathrm{Cu}(2)$	132.1(2)
$\mathrm{Cu}(1)-\mathrm{O}(1)-\mathrm{C}(17)$	113.9(4)	$\mathrm{Cu}(2)-\mathrm{O}(1)-\mathrm{C}(17)$	113.8(4)
$\mathrm{C}(1)-\mathrm{O}(2)-\mathrm{C}(7)$	119.3(7)	$\mathrm{C}(8)-\mathrm{O}(3)-\mathrm{C}(9)$	122.7(6)
$\mathrm{Cu}(1)-\mathrm{O}(4)-\mathrm{C}(20)$	131.4(4)	$\mathrm{Cu}(2)-\mathrm{O}(5)-\mathrm{C}(20)$	136.8(5)
$\mathrm{Cu}(1)-\mathrm{N}(1)-\mathrm{C}(18)$	104.6(4)	$\mathrm{Cu}(1)-\mathrm{N}(1)-\mathrm{C}(19)$	114.1(4)
$\mathrm{C}(18)-\mathrm{N}(1)-\mathrm{C}(19)$	113.5(5)	$\mathrm{Cu}(2)-\mathrm{N}(2)-\mathrm{C}(15)$	113.2(4)
$\mathrm{Cu}(2)-\mathrm{N}(2)-\mathrm{C}(16)$	105.1(4)	$\mathrm{C}(15)-\mathrm{N}(2)-\mathrm{C}(16)$	113.4(5)
$\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{C}(2)$	117.1(7)	$\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	123.0(8)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	119.9(8)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$119.0(8)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(15)$	121.3(7)	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(15)$	119.7(8)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	122.1(9)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	118.0(9)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	121.9(10)	$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	119.2(9)
$\mathrm{O}(2)-\mathrm{C}(7)-\mathrm{C}(8)$	107.6(7)	$\mathrm{O}(3)-\mathrm{C}(8)-\mathrm{C}(7)$	113.0(8)
$\mathrm{O}(3)-\mathrm{C}(9)-\mathrm{C}(10)$	115.0(7)	$\mathrm{O}(3)-\mathrm{C}(9)-\mathrm{C}(14)$	124.8(7)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(14)$	120.2(7)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	119.2(7)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(19)$	121.9(7)	$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(19)$	118.8(7)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	121.0(8)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	118.2(9)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	121.2(9)	$\mathrm{C}(9)-\mathrm{C}(14)-\mathrm{C}(13)$	120.1(8)
$\mathrm{N}(2)-\mathrm{C}(15)-\mathrm{C}(2)$	112.4(6)	$\mathrm{N}(2)-\mathrm{C}(16)-\mathrm{C}(17)$	108.3(5)
$\mathrm{O}(1)-\mathrm{C}(17)-\mathrm{C}(16)$	108.1(5)	$\mathrm{O}(1)-\mathrm{C}(17)-\mathrm{C}(18)$	108.5(5)
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	$111.3(5)$	$\mathrm{N}(1)-\mathrm{C}(18)-\mathrm{C}(17)$	108.2(5)
$\mathrm{N}(1)-\mathrm{C}(19)-\mathrm{C}(10)$	114.1(6)	$\mathrm{O}(4)-\mathrm{C}(20)-\mathrm{O}(5)$	126.8(6)
$\mathrm{O}(4)-\mathrm{C}(20)-\mathrm{C}(21)$	118.2(6)	$\mathrm{O}(5)-\mathrm{C}(20)-\mathrm{C}(21)$	114.9(6)
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)$	119.5(7)	$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(26)$	121.6(6)
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(26)$	118.9(7)	$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	120.3(9)
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	120.2(9)	$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$	120.1(9)
$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)$	120.4(9)	$\mathrm{C}(21)-\mathrm{C}(26)-\mathrm{C}(25)$	120.1(7)
$\mathrm{C}(27)-\mathrm{C}(32)-\mathrm{C}(33)$	121.4(6)	$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(33)$	118.4(6)
$\mathrm{O}(6)-\mathrm{C}(33)-\mathrm{C}(32)$	112.5(9)	$\mathrm{O}(8)-\mathrm{C}(40)-\mathrm{C}(39)$	108.5(17)
$\mathrm{C}(34)-\mathrm{C}(39)-\mathrm{C}(40)$	121.8(10)	$\mathrm{C}(38)-\mathrm{C}(39)-\mathrm{C}(40)$	117.7(9)

I Inversion related atom by the operation $-x,-y,-z$.
abundance. Most interestingly, the f.a.b.m.s. of the perchlorate complexes gave peaks at high mass numbers corresponding to the presence of oligomeric species. As only g.c.-purified ligands were used in the complexation studies it is improbable that these species can be derived from $2+2$ macrocycles and more likely that they arise from aggregation around the molecular ion in the matrix during the f.a.b.m.s. experiment, as has been observed for complexes such as $\left[\mathrm{Co}\left\{\mathrm{H}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NH}_{2}\right\}_{2}\right]$ $\left[\mathrm{ClO}_{4}\right]_{3}{ }^{14}$ Studies on complexes of cyclic polyethers have not revealed high-mass aggregates ${ }^{15}$ and there has been no report of high-mass, oligomeric species derived from metal complexes of Schiff-base macrocycles. Therefore it is proposed that the aggregation here is linked to the presence of the deprotonated pendant hydroxy-function in the macrocycles and that the high-mass peaks are derived from the breakdown of oligomeric solid-state species.

The formation of a chain, or stack, involving two or more of the basic unit $\mathrm{ML}\left(\mathrm{ClO}_{4}\right)$ linked by a bridging group is possible. The i.r. spectra show that the anions are non-co-ordinating and so it is likely that the endogenous alkoxide is available for bridging to build up species such as (II)
The $1: 1$ complexes formed by the reaction of the $1+1$ macrocycles and $\mathrm{M}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{M}=\mathrm{Co}, \mathrm{Ni}, \mathrm{Cu}, \mathrm{Zn}$, or Cd$)$ follow the patterns exhibited by the perchlorate complexes (Tables 9 and 10). The i.r. spectra show NH stretching bands in the region

Table 6. Proton n.m.r. spectra $\left(\mathrm{CD}_{3} \mathrm{CN}\right)$ of the zinc complexes

$\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet. Change in chemical shift as compared to free ligand ($\Delta \delta$) (negative value indicates a shift to lower field): $\mathrm{H}_{\mathrm{A}},-0.14 ; \mathrm{H}_{\mathrm{B}},-0.55 ; \mathrm{H}_{\mathrm{C}},-0.37 ; \mathrm{H}_{\mathrm{D}},+0.04 ; \mathrm{H}_{\mathrm{E}}$, $+0.01 ; \mathrm{H}_{\mathrm{F}},-0.05 ; \mathrm{H}_{\mathrm{G}},-0.03 ; \mathrm{H}_{\mathrm{b}},-0.22$; and $\mathrm{H}_{\mathrm{K}},-0.17$.

	$\mathrm{Zn}\left(\mathrm{HL}^{3}\right) \mathrm{Cl}_{2}$	
	Assignment	Integration
$7.28(\mathrm{t})$	H_{F}	$(2 \mathrm{H})$
$7.20(\mathrm{~d})$	H_{D}	$(2 \mathrm{H})$
$6.92(\mathrm{t})$	H_{E}	$(2 \mathrm{H})$
$6.87(\mathrm{~d})$	H_{G}	$(2 \mathrm{H})$
$4.41(\mathrm{~m})$	H_{I}	$(4 \mathrm{H})$
$4.14(\mathrm{~s})$	H_{C}	$(4 \mathrm{H})$
$4.11(\mathrm{~m})$	H_{A}	$(1 \mathrm{H})$
$3.26(\mathrm{~m})$	H_{B}	$(4 \mathrm{H})$
$2.13(\mathrm{~m})$	H_{K}	$(4 \mathrm{H})$

Change in chemical shift as compared to free ligand $(\Delta \delta): \mathrm{H}_{\mathrm{A}},-0.16$; $\mathrm{H}_{\mathrm{B}},-0.53 ; \mathrm{H}_{\mathrm{C}},-0.34 ; \mathrm{H}_{\mathrm{D}}+0.03 ; \mathrm{H}_{\mathrm{E}},-0.01 ; \mathrm{H}_{\mathrm{F}},-0.04 ; \mathrm{H}_{\mathrm{G}},-0.01 ; \mathrm{H}_{1}$, -0.34 ; and $\mathrm{H}_{\mathrm{K}},-0.06$.
$3240-3310$ and a single band at $1380 \mathrm{~cm}^{-1}$ due to the asymmetric $\mathrm{N}-\mathrm{O}$ stretch of an ionic nitrate. ${ }^{13}$ The reaction of HL^{8} with $\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2}$ gave two products, mauve $\left[\mathrm{NiL}^{8}\right] \mathrm{NO}_{3}$. $0.5 \mathrm{H}_{2} \mathrm{O}$ and green $\left[\mathrm{Ni}\left(\mathrm{HL}^{8}\right)\left(\mathrm{NO}_{3}\right)\right] \mathrm{NO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ for which bands at 1450,1380 , and $1295 \mathrm{~cm}^{-1}$ are found and attributed to the presence of both co-ordinated and non-co-ordinated nitrate.

The fa.b.m.s. of the green complex shows a parent peak corresponding to $\left[\mathrm{Ni}(\mathrm{HL})\left(\mathrm{NO}_{3}\right)\right]^{+}$whereas that for the mauve complex has peaks corresponding to [NiL] ${ }^{+}$and higher oligomeric species. The complexes of general formula [ML]NO ${ }_{3}$. $n \mathrm{H}_{2} \mathrm{O}$ all exhibit high-mass peaks and it is likely that oligomers of the form (II) are present.

Complexes of a $2+2$ Macrocycle.-Metal complexation

studies were undertaken for one $2+2$ macrocycle, HL^{10} where full reduction of the imine bonds and a double or $2+2$ condensation has occurred. Mononuclear complexes with retention of the OH functions were recovered from reaction of the macrocycle with $\mathrm{M}\left(\mathrm{ClO}_{4}\right)_{2}(\mathrm{M}=\mathrm{Co}, \mathrm{Ni}$, or Zn$)$ and CdCl_{2} whereas a homodinuclear species in which the alcohol groups have been deprotonated is obtained from $\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2}$.
The analytical and m.s. data are presented in Table 11. The f.a.b.m.s. of the mononuclear complexes shows two major peaks attributable to the ions $\left[\mathrm{M}\left(\mathrm{HL}^{10}\right)\right]^{+}$and $\left[\mathrm{M}\left(\mathrm{H}_{2} \mathrm{~L}^{10}\right) \mathrm{X}\right]^{+}$where X is an anion. The dinuclear copper(II) complex shows peaks corresponding to $\left[\mathrm{Cu}\left(\mathrm{HL}^{10}\right)\right]^{+},\left[\mathrm{Cu}_{2} \mathrm{~L}^{10}\right]^{2+}$, and $\left[\mathrm{Cu}_{2} \mathrm{~L}^{10}{ }_{-}\right.$ $\left.(\mathrm{ClO})_{4}\right]^{+}$. No higher-mass peaks were detected for these complexes.
The i.r. spectra show NH stretching frequencies in the region $3250-3300 \mathrm{~cm}^{-1}$ and, for the mononuclear complexes, the ligand OH stretching modes are at $c a .3430 \mathrm{~cm}^{-1}$. The single perchlorate stretch noted at $c a .1100 \mathrm{~cm}^{-1}$ indicates the presence of non-co-ordinated anions. Comparison can be made with the potentially dinucleating octadentate macrocycle (3) for which only mononuclear complexes have been obtained. ${ }^{16}$ This observation was assumed to reflect the preference of the transition-metal ions used for the N_{4} donor set from the macrocycle and was confirmed with the crystal structure of the dithiocyanatonickel complex in which the nickel is octahedrally co-ordinated by the four N atoms of the macrocycle and two cis-thiocyanate anions. In the current study the complexes of Ni, Zn, and Cd are probably involved in a similar bonding pattern, there being no deprotonation of the endogenous alcohols. The dinuclear copper(II) complex is formed with double deprotonation of the ligand and in the absence of a crystal structure and with knowledge of the nature of (I) it is plausible to propose a doubly bridged species in which the endogenous alkoxy-groups are employed as the bridges (III).

Conclusions

The introduction of the hydroxyl group into the framework of the $\mathrm{N}_{2} \mathrm{O}_{2}$ Lindoy-type macrocycles has afforded interesting and novel features both in the formation of the macrocyclic ligands and of their transition-metal complexes. Detailed study of the complexes has however been hindered by solubility problems.

The involvement of the pendant hydroxyl group in complexation appears to be closely linked to the type of anion present. In the mononuclear halide complexes the hydroxyl remains protonated and is therefore unlikely to be involved in coordination because of the presence of strongly co-ordinating anions. For the complexes of the less strongly co-ordinating anions the hydroxyl is deprotonated and likely to be involved in complexation as it will readily displace the weak anion. These

Table 7. Macrocyclic complexes of metal perchlorates

Complex	Analysis* (\%)				I.r. bands (cm^{-1})	
	C	H	N	Cl	Secondary amine $\mathrm{N}-\mathrm{H}$ stretch	Perchlorate
$\mathrm{CuL}^{1}\left(\mathrm{ClO}_{4}\right) \cdot \mathrm{H}_{2} \mathrm{O}$	45.3	5.0	5.3	6.9	3275	1100(br), $625(\mathrm{sp}$)
	(44.9)	(5.0)	(5.5)	(7.0)		
$\mathrm{CoL}^{1}\left(\mathrm{ClO}_{4}\right) \cdot 0.5 \mathrm{MeOH}$	46.6	5.0	5.5	6.8	$3300(\mathrm{sh}), 3$ 260(sp)	1090 (br), 625(sp)
	(46.7)	(5.0)	(5.6)	(7.1)		
$\mathrm{ZnL}^{1}\left(\mathrm{ClO}_{4}\right) \cdot \mathrm{H}_{2} \mathrm{O}$	44.0	5.0	5.4	5.8	3290	1115,1070,625(sp)
	(44.7)	(4.9)	(5.5)	(7.0)		
$\mathrm{CuL}^{2}\left(\mathrm{ClO}_{4}\right) \cdot \mathrm{H}_{2} \mathrm{O}$	46.7	5.3	5.6		3280	$1100(\mathrm{vbr}), 620$
	(46.0)	(5.4)	(5.4)			
$\mathrm{NiL}^{2}\left(\mathrm{ClO}_{4}\right)$	47.8	5.4	5.2	7.1	3290,3 260(sh)	1090 (br), 625(sp)
	(48.1)	(5.0)	(5.6)	(7.1)		
$\mathrm{ZnL}^{2}\left(\mathrm{ClO}_{4}\right)$	46.9	5.2	5.1		3290	$1100(\mathrm{vbr}), 620$
	(47.4)	(5.0)	(5.5)			
$\mathrm{CuL}^{4}\left(\mathrm{ClO}_{4}\right) \cdot \mathrm{H}_{2} \mathrm{O}$	46.8	5.7	4.8	7.1	3280	$1100(\mathrm{br}), 620(\mathrm{sp})$
	(47.0)	(5.5)	(5.2)	(6.6)		
$\mathrm{NiL}^{3}\left(\mathrm{ClO}_{4}\right)$	48.9	5.4	5.4		3280	1110(br), 620 (sp)
	(49.1)	(5.3)	(5.5)			
$\mathrm{CoL}^{3}\left(\mathrm{ClO}_{4}\right)$	49.5	5.6	5.3	6.7	3260 (sp), 3240 (sh)	$1120,1090,620(s p)$
	(49.1)	(5.3)	(5.4)	(6.9)		
$\mathrm{ZnL}^{3}\left(\mathrm{ClO}_{4}\right)$	48.1	5.4	5.2	6.7	3290	$1120,1100,620(s p)$
	(48.5)	(5.2)	(5.4)	(6.8)		
$\mathrm{CuL}^{4}\left(\mathrm{ClO}_{4}\right) \cdot \mathrm{H}_{2} \mathrm{O}$	47.9	5.9	5.2	6.9	3270,3 200(sh)	1120,1085, 630(sh), 625
	(48.0)	(5.7)	(5.1)	(6.4)		
$\mathrm{ZnL}^{4}\left(\mathrm{ClO}_{4}\right) \cdot 2 \mathrm{H}_{2} \mathrm{O}$	46.3	6.0	5.1	6.6	3300 (sh)	$1100(\mathrm{vbr}), 625$
	(46.3)	(5.8)	(4.9)	(6.2)		
$\mathrm{CuL}^{5}\left(\mathrm{ClO}_{4}\right)$	50.4	5.9	4.9		3260 (sp)	1140, $1090,625(\mathrm{sp})$
	(50.5)	(5.7)	(5.1)			
$\mathrm{ZnL}^{5}\left(\mathrm{ClO}_{4}\right)$	50.6	5.6	5.2		$3270(s h), 3260$	$1100(\mathrm{br}), 620(\mathrm{sp})$
	(50.3)	(5.7)	(5.1)			
$\mathrm{CuL}^{7}\left(\mathrm{ClO}_{4}\right) \cdot \mathrm{H}_{2} \mathrm{O}$	53.1	5.4	4.7		3275	$1110(\mathrm{br}), 620(\mathrm{sp})$
	(52.9)	(5.4)	(4.6)			
$\mathrm{NiL}^{7}\left(\mathrm{ClO}_{4}\right)$	55.1	6.0	4.8	6.1	3300 (sp), 3280 (sh)	1110, 1 060, 620(sp)
	(55.0)	(5.3)	(4.8)	(6.0)		
$\mathrm{CoL}^{7}\left(\mathrm{ClO}_{4}\right) \cdot \mathrm{MeOH}$	54.4	6.1	4.6		3295 (sp)	1120, 1090,625(sp)
	(54.0)	(5.8)	(4.5)			
$\mathrm{ZnL}^{7}\left(\mathrm{ClO}_{4}\right)$	54.4	5.8	4.6	5.9	3280	$1100(\mathrm{br}), 620(\mathrm{sp})$
	(54.4)	(5.2)	(4.7)	(5.9)		
$\mathrm{L}^{6}\left(\mathrm{ClO}_{4}\right)$	46.9	5.2	5.1	6.9	3280 (sh), 3260	$1110(\mathrm{br}), 630(\mathrm{sp})$
	(47.2)	(5.1)	(5.2)	(6.6)		
$\mathrm{NiL}^{6}\left(\mathrm{ClO}_{4} \cdot \mathrm{MeCN}\right.$	48.5	5.1	7.4	6.6	3300 (sp)	1120, $1070,620(s p)$
	(48.4)	(5.3)	(7.4)	(6.2)		
$\mathrm{CoL}^{6}\left(\mathrm{ClO}_{4}\right) \cdot 0.5 \mathrm{BuOH}$	49.2	5.8	5.5	6.3	3295 (sh)	1 120,1070, $630(\mathrm{sh}), 625$
	(48.7)	(5.7)	(4.9)	(6.3)		
$\mathrm{ZnL}{ }^{6}\left(\mathrm{ClO}_{4}\right) \cdot 0.5 \mathrm{BuOH}$	48.2	5.8	4.8	6.0	3280 (br)	1100 (br), 625
	(48.2)	(5.6)	(4.9)	(6.2)		
$\mathrm{CuL}^{8}\left(\mathrm{ClO}_{4}\right) \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$	50.2	4.9	7.2	6.4	3260 (sp)	1100 (vbr), 625
	(50.0)	(4.7)	(7.3)	(6.1)		
$\mathrm{CoL}^{8}\left(\mathrm{ClO}_{4}\right) \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$	50.3	4.7	7.7	6.0	3250 (br)	1120, $1080,620(s p)$
	(50.4)	(4.8)	(7.4)	(6.2)		
$\mathrm{ZnL}^{8}\left(\mathrm{ClO}_{4}\right) \cdot \mathrm{H}_{2} \mathrm{O}$	48.9	4.9	6.7	8.3	3290 (sh), 3 250(sp)	$1090(\mathrm{br}), 625(\mathrm{sp})$
	(49.1)	(4.8)	(7.1)	(6.0)		
alculated values given in parentheses.						

observations reinforce the view, advanced by Wang and Chung ${ }^{17}$ in a discussion concerning changes in the dependence of the thermodynamic stability patterns of Lindoy-type macrocyclic complexes on the ring size when changing from chloride to nitrate anions, that the choice of the counter anion has a significant effect on the type of macrocyclic complex formed.

The usefulness of f.a.b.m.s. in this area has been demonstrated and the presence of intriguing oligomeric species has been established through application of this technique.

Experimental

Microanalyses were carried out by the University of Sheffield
and the University of Leeds Microanalytical Services. I.r. spectra were recorded as KBr discs using a Perkin-Elmer 297 spectrophotometer. E.i. mass spectra were recorded using a Kratos MS 25 spectrometer and f.a.b.m.s. using a Kratos MS 80RF mass spectrometer (accelerating voltage 4 kV , resolution 1500) coupled to a DS55 data system. The atom gun was an adapted saddle-field source (Ion Tech Ltd.) operated at $c a .6 \mathrm{eV}$ and a tube current of ca. 2 mA . Xenon was used to provide the primary beam of atoms and the samples were mixed with a small amount of 3-nitrobenzyl alcohol matrix on a stainlesssteel probe. Spectra were recorded in the positive-ion mode at a scan speed of 30 -s per decade. N.m.r. spectra were run on PerkinElmer R34, Bruker WH250, and Bruker WH400 spectrometers.

Table 8. F.a.b. mass spectra of the metal perchlorate complexes

Complex	m / z, Assignment, relative intensity (\%)
$\mathrm{CuL}{ }^{1}\left(\mathrm{ClO}_{4}\right) \cdot \mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & 391,\left[\mathrm{CuL}^{1}\right]^{+}, 100 ; 1269,\left[\mathrm{Cu}_{3} \mathrm{~L}^{1}{ }_{3}\left(\mathrm{ClO}_{4}\right)\right]^{+}, 3 ; \\ & 1370\left[\mathrm{Cu}_{3} \mathrm{~L}^{1}{ }_{3}\left(\mathrm{ClO}_{4}\right)_{2}\right]^{+}, 15 \end{aligned}$
$\begin{gathered} \mathrm{CoL}^{1}\left(\mathrm{ClO}_{4}\right) \cdot \\ 0.5 \mathrm{MeOH} \end{gathered}$	$386,\left[\mathrm{CoL}^{1}\right]^{+}, 100 ; 870\left[\mathrm{Co}_{2} \mathrm{~L}^{1}{ }_{2}\left(\mathrm{ClO}_{4}\right)\right]^{+}, 25 ;$ $1197\left[\mathrm{Co}_{2} \mathrm{~L}^{1}{ }_{3}\left(\mathrm{ClO}_{4}\right)+\mathrm{H}\right]^{+}, 15$
$\mathrm{ZnL}^{1}\left(\mathrm{ClO}_{4}\right) \cdot \mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & 391,\left[\mathrm{ZnL}^{1}\right]^{+}, 100 ; 883,\left[\mathrm{Zn}_{2} \mathrm{~L}^{1}{ }_{2}\left(\mathrm{ClO}_{4}\right)\right]^{+}, 12 \\ & 1375,\left[\mathrm{Zn}_{3} \mathrm{~L}^{1}{ }_{3}\left(\mathrm{ClO}_{4}\right)_{2}\right]^{+}, 9 \end{aligned}$
$\mathrm{CuL}^{2}\left(\mathrm{ClO}_{4}\right) \cdot \mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & 405,\left[\mathrm{CuL}^{2}\right]^{+}, 100 ; 909,\left[\mathrm{Cu}_{2} \mathrm{~L}^{2}{ }_{2}\left(\mathrm{ClO}_{4}\right)\right]^{+}, 10 \\ & 1412,\left[\mathrm{Cu}_{3} \mathrm{~L}^{2}{ }_{3}\left(\mathrm{ClO}_{4}\right)_{2}\right]^{+}, 15 \end{aligned}$
$\mathrm{NiL}^{2}\left(\mathrm{ClO}_{4}\right)$	$\begin{aligned} & 399,\left[\mathrm{NiL}^{2}\right]^{+}, 100 ; 741,\left[\mathrm{NiL}^{2}{ }_{2}+\mathrm{H}\right]^{+}, 46 ; 843, \\ & {\left[\mathrm{NiL}^{2}{ }_{2}\left(\mathrm{ClO}_{4}\right)+\mathrm{H}_{2}\right]^{+}, 30} \end{aligned}$
$\mathrm{CoL}^{2}\left(\mathrm{ClO}_{4}\right)$	$400,\left[\mathrm{CoL}^{2}\right]^{+}, 100 ; 900,\left[\mathrm{Co}_{2} \mathrm{~L}^{2} 2\left(\mathrm{ClO}_{4}\right)\right]^{+}, 35$
$\mathrm{ZnL}^{2}\left(\mathrm{ClO}_{4}\right)$	$\begin{aligned} & 405,\left[\mathrm{ZnL}^{2}\right]^{+}, 100 ; 909,\left[\mathrm{Zn}_{2} \mathrm{~L}^{2}\left(\mathrm{ClO}_{4}\right)\right]^{+}, 32 \\ & 1413,\left[\mathrm{Zn}_{3} \mathrm{~L}^{2}{ }_{3}\left(\mathrm{ClO}_{4}\right)_{2}\right]^{+}, 1 \end{aligned}$
$\mathrm{CuL}^{3}\left(\mathrm{ClO}_{4}\right) \cdot \mathrm{H}_{2} \mathrm{O}$	$419,\left[\mathrm{CuL}^{3}\right]^{+}, 100 ; 938,\left[\mathrm{Cu}_{2} \mathrm{~L}^{3}{ }_{2}\left(\mathrm{ClO}_{4}\right)\right]^{+}, 5$; $1002,\left[\mathrm{Cu}_{3} \mathrm{~L}^{3}{ }_{2}\left(\mathrm{ClO}_{4}\right)\right]^{3+}, 15 ; 1455$, $\left[\mathrm{Cu}_{3} \mathrm{~L}^{3}{ }_{3}\left(\mathrm{ClO}_{4}\right)_{2}\right]^{+}, 15$
$\mathrm{NiL}^{3}\left(\mathrm{ClO}_{4}\right)$	$413,\left[\mathrm{NiL}^{3}\right]^{+}, 100 ; 769,\left[\mathrm{NiL}_{2}^{3}+\mathrm{H}\right]^{+}, 25 ; 871$, $\left[\mathrm{NiL}^{3}{ }_{2}\left(\mathrm{ClO}_{4}\right)^{+}, \mathrm{H}_{2}\right]^{+}, 25$
$\mathrm{CoL}^{3}\left(\mathrm{ClO}_{4}\right)$	$\begin{aligned} & 414,\left[\mathrm{CoL}^{3}\right]^{+}, 100 ; 928,\left[\mathrm{Co}_{2} \mathrm{~L}^{3}{ }_{2}\left(\mathrm{ClO}_{4}\right)\right]^{+}, 35 ; \\ & 1283,\left[\mathrm{Co}_{2} \mathrm{~L}^{3}{ }_{3}\left(\mathrm{ClO}_{4}\right)+\mathrm{H}\right]^{+}, 8 \end{aligned}$
$\mathrm{ZnL}^{3}\left(\mathrm{ClO}_{4}\right)$	$420,\left[\mathrm{ZnL}^{3}\right]^{+}, 100 ; 938,\left[\mathrm{Zn}_{2} \mathrm{~L}^{3}{ }_{2}\left(\mathrm{ClO}_{4}\right)\right]^{+}, 10$; $1460,\left[\mathrm{Zn}_{3} \mathrm{~L}^{3}{ }_{3}\left(\mathrm{ClO}_{4}\right)_{2}\right]^{+}, 8 ; 1982$, $\left[\mathrm{Zn}_{4} \mathrm{~L}^{3}{ }_{4}\left(\mathrm{ClO}_{4}\right)_{3}\right]^{+}, 4$
$\mathrm{CuL}^{4}\left(\mathrm{ClO}_{4}\right) \cdot \mathrm{H}_{2} \mathrm{O}$	433, $\left[\mathrm{CuL}^{4}\right]^{+}, 100 ; 1497,\left[\mathrm{Cu}_{3} \mathrm{~L}^{4}{ }_{3}\left(\mathrm{ClO}_{4}\right)_{2}\right]^{+}, 8$
$\mathrm{ZnL}^{4}\left(\mathrm{ClO}_{4}\right) \cdot 2 \mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & 434,\left[\mathrm{ZnL}^{4}\right]^{+}, 100 ; 966,\left[\mathrm{Zn}_{2} \mathrm{~L}^{4}{ }_{2}\left(\mathrm{ClO}_{4}\right)\right]^{+}, 15 ; \\ & 1502,\left[\mathrm{Zn}_{3} \mathrm{~L}^{4}{ }_{3}\left(\mathrm{ClO}_{4}\right)_{2}\right]^{+}, 6 \end{aligned}$
$\mathrm{CuL}^{5}\left(\mathrm{ClO}_{4}\right)$	$447,\left[\mathrm{CuL}^{5}\right]^{+}, 100 ; 1553,\left[\mathrm{Cu}_{3} \mathrm{~L}^{5}{ }_{3}\left(\mathrm{ClO}_{4}\right)_{2}\right]^{+}, 10$
$\mathrm{ZnL}^{5}\left(\mathrm{ClO}_{4}\right)$	$\begin{aligned} & 447,\left[\mathrm{ZnL}^{5}\right]^{+}, 100 ; 993,\left[\mathrm{Zn}_{2} \mathrm{~L}^{5}{ }_{2}\left(\mathrm{ClO}_{4}\right)\right]^{+}, 10 \\ & 1555,\left[\mathrm{Zn}_{3} \mathrm{~L}^{\mathrm{s}}{ }_{3}\left(\mathrm{ClO}_{4}\right)_{2}\right]^{+}, 5 \end{aligned}$
$\mathrm{CuL}^{7}\left(\mathrm{ClO}_{4}\right) \cdot \mathrm{H}_{2} \mathrm{O}$	$494,\left[\mathrm{CuL}^{7}\right]^{+}, 100 ; 1087,\left[\mathrm{Cu}_{2} \mathrm{~L}^{7} 2\left(\mathrm{ClO}_{4}\right)\right]^{+}, 5$
$\mathrm{NiL}^{7}\left(\mathrm{ClO}_{4}\right)$	$489,\left[\mathrm{NiL}^{7}\right]^{+}, 100 ; 589,\left[\mathrm{NiL}^{7}\left(\mathrm{ClO}_{4}\right)+\mathrm{H}_{2}\right]^{+}, 40$
$\mathrm{CoL}^{7}\left(\mathrm{ClO}_{4}\right) \cdot \mathrm{MeOH}$	$490,\left[\mathrm{CoL}^{7}\right]^{+}, 100 ; 590\left[\mathrm{CoL}^{7}\left(\mathrm{ClO}_{4}\right)+\mathrm{H}^{+}\right.$ 25; $1022,\left[\mathrm{CoL}^{7}{ }_{2}\left(\mathrm{ClO}_{4}\right)+\mathrm{H}_{2}\right]^{+}, 22 ; 1671$ $\left[\mathrm{Co}_{3} \mathrm{~L}^{7} 3\left(\mathrm{ClO}_{4}\right)_{2}\right]^{+}, 4$
$\mathrm{ZnL}^{7}\left(\mathrm{ClO}_{4}\right)$	$495,\left[\mathrm{ZnL}^{7}\right]^{+}, 100 ; 1088,\left[\mathrm{Zn}_{2} \mathrm{~L}^{7}{ }_{2}\left(\mathrm{ClO}_{4}\right)\right]^{+}, 11$
$\mathrm{CuL}^{6}\left(\mathrm{ClO}_{4}\right)$	$435,\left[\mathrm{CuL}^{6}\right]^{+}, 100 ; 971,\left[\mathrm{Cu}_{2} \mathrm{~L}^{6}{ }_{2}\left(\mathrm{ClO}_{4}\right)\right]^{+}, 10$; $1032,\left[\mathrm{Cu}_{3} \mathrm{~L}^{6}{ }_{2}\left(\mathrm{ClO}_{4}\right)\right]^{3+}, 8 ; 1502$, $\left[\mathrm{Cu}_{3} \mathrm{~L}^{6}\left(\mathrm{ClO}_{4}\right)_{2}\right]^{+}, 17$
$\mathrm{NiL}^{6}\left(\mathrm{ClO}_{4}\right) \cdot \mathrm{MeCN}$	$429,\left[\mathrm{NiL}^{6}\right]^{+}, 100 ; 529,\left[\mathrm{NiL}^{6}\left(\mathrm{ClO}_{4}\right)+\mathrm{H}\right]^{+}$, 42; 901, $\left[\mathrm{NiL}^{6}{ }_{2}\left(\mathrm{ClO}_{4}\right)+\mathrm{H}_{2}\right]^{+}, 22 ; 1432$, $\left[\mathrm{Ni}_{2} \mathrm{~L}^{6}{ }_{3}\left(\mathrm{ClO}_{4}\right)_{2}+\mathrm{H}_{2}\right]^{+}, 2$
$\mathrm{CoL}^{6}\left(\mathrm{ClO}_{4}\right)$ -	431, $\left[\mathrm{CoL}^{6}\right]^{+}, 100 ; 530,\left[\mathrm{CoL}^{6}\left(\mathrm{ClO}_{4}\right)+\mathrm{H}\right]^{+}$,
0.5 BuOH	$\begin{aligned} & 15 ; 803,\left[\mathrm{CoL}^{6}{ }_{2}+\mathrm{H}\right]^{+}, 12 ; 902 \\ & {\left[\mathrm{CoL}^{6}{ }_{2}\left(\mathrm{ClO}_{4}\right)\right]^{+}, 18} \end{aligned}$
$\begin{gathered} \mathrm{ZnL}^{6}\left(\mathrm{ClO}_{4}\right) \cdot \\ 0.5 \mathrm{BuOH} \end{gathered}$	$\begin{aligned} & 435,\left[\mathrm{ZnL}^{6}\right]^{+}, 100 ; 973,\left[\mathrm{Zn}_{2} \mathrm{~L}_{2}^{6}\left(\mathrm{ClO}_{4}\right)\right]^{+}, 10 \\ & 1507,\left[\mathrm{Zn}_{3} \mathrm{~L}^{6}{ }_{3}\left(\mathrm{ClO}_{4}\right)_{2}\right]^{+}, 7 \end{aligned}$
$\mathrm{CuL}^{8}\left(\mathrm{ClO}_{4}\right) \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & 468,\left[\mathrm{CuL}^{8}\right]^{+}, 100 ; 1037,\left[\mathrm{Cu}_{2} \mathrm{~L}^{8}{ }_{2}\left(\mathrm{ClO}_{4}\right)\right]^{+}, \\ & 54 ; 1604,\left[\mathrm{Cu}_{3} \mathrm{~L}_{3}^{8}\left(\mathrm{ClO}_{4}\right)_{2}\right]^{+}, 19 \end{aligned}$
$\mathrm{CoL}^{8}\left(\mathrm{ClO}_{4}\right) \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & 464,\left[\mathrm{CoL}^{8}\right]^{+}, 100 ; 564,\left[\mathrm{CoL}^{8}\left(\mathrm{ClO}_{4}\right)+\mathrm{H}\right]^{+}, \\ & 12 ; 968,\left[\mathrm{CoL}^{8}{ }_{2}\left(\mathrm{ClO}_{4}\right)+\mathrm{H}_{2}\right]^{+}, 14 \end{aligned}$
$\mathrm{ZnL}^{8}\left(\mathrm{ClO}_{4}\right) \cdot \mathrm{H}_{2} \mathrm{O}$	470, $\left[\mathrm{ZnL}^{8}\right]^{+}, 100 ; 1039,\left[\mathrm{Zn}_{2} \mathrm{~L}^{8}{ }_{2}\left(\mathrm{ClO}_{4}\right)\right]^{+}, 90$

The organic ligands were prepared by literature methods or modifications thereof. ${ }^{18-21}$ The preparation of HL^{2} is described as a representative example.
(i) 1,3-Bis(2'-formylphenoxy)propane $\left[\mathbf{1} ; \mathrm{R}=\left(\mathrm{CH}_{2}\right)_{3}\right]$ was prepared according to the method of Armstrong and Lindoy. ${ }^{21}$
(ii) 1,3-Diamino-2-propanol ($0.5 \mathrm{~g}, 5.5 \mathrm{mmol}$) in methanol ($60 \mathrm{~cm}^{3}$) was added slowly to a refluxing solution of the dialdehyde $\left[1 ; \mathrm{R}=\left(\mathrm{CH}_{2}\right)_{3}\right](1.42 \mathrm{~g}, 5 \mathrm{mmol})$ in methanol ($60 \mathrm{~cm}^{3}$). The solution was refluxed for 2 h and an excess of $\mathrm{NaBH}_{4}(0.5 \mathrm{~g})$ was added carefully. Reflux was continued for 15 min and then the solution was allowed to cool to ambient temperature and filtered. The filtrate was reduced under vacuum to a volume of $30 \mathrm{~cm}^{3}$ and distilled water ($100 \mathrm{~cm}^{3}$) added. The solution was allowed to stand overnight in a refrigerator and a dark brown oil formed. This was extracted with CHCl_{3}, washed with water ($2 \times 50 \mathrm{~cm}^{3}$), and dried over sodium sulphate. The

Table 9. Macrocyclic complexes of metal nitrates

Complex	Analysis (\%)			I.r. bands (cm^{-1})	
				$\xlongequal[\text { Secondary }]{ }$	${ }^{-1}$
	C	H	N	amine $\mathrm{N}-\mathrm{H}$ stretch	Nitrate
$\mathrm{CuL}^{1}\left(\mathrm{NO}_{3}\right) \cdot \mathrm{H}_{2} \mathrm{O}$	$\begin{gathered} 48.5 \\ (48.5) \end{gathered}$	$\begin{gathered} 5.4 \\ (5.4) \end{gathered}$	$\begin{gathered} 8.6 \\ (8.9) \end{gathered}$	3260 (sp)	1390 s
$\mathrm{NiL}^{1}\left(\mathrm{NO}_{3}\right) \cdot \mathrm{H}_{2} \mathrm{O}$	48.7 (49.0)	5.4	8.7 (9.0)	$3255(\mathrm{sp})$	$1380 \mathrm{~s}(\mathrm{br})$
	(49.0) 48.9	$\begin{gathered} (5.4) \\ 5.7 \end{gathered}$	(9.0) 8.4	$\begin{aligned} & 3 \text { 230(sp) } \\ & 3260(\mathrm{br}) \end{aligned}$	
$\mathrm{CuL}^{2}\left(\mathrm{NO}_{3}\right) \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$	$\begin{gathered} 48.9 \\ (48.6) \end{gathered}$	(5.7)	(8.5)	3260 (br)	1390 s(br)
$\mathrm{NiL}^{2}\left(\mathrm{NO}_{3}\right) \cdot \mathrm{H}_{2} \mathrm{O}$	$\begin{gathered} 49.7 \\ (50.0) \end{gathered}$	$\begin{gathered} 5.6 \\ (5.6) \end{gathered}$	$\begin{gathered} 8.7 \\ (8.8) \end{gathered}$	3280 (br)	1385 s
$\mathrm{ZnL}^{2}\left(\mathrm{NO}_{3}\right) \cdot \mathrm{H}_{2} \mathrm{O}$	48.9	5.2	8.5	3280 (sh)	1385 s (br)
	(49.3)	(5.6)	(8.6)		
$\mathrm{CdL}^{2}\left(\mathrm{NO}_{3}\right) \cdot \mathrm{H}_{2} \mathrm{O}$	44.8	5.0	7.7	3280 (br)	1380 (vbr)
	(44.9)	(5.1)	(7.9)		
$\mathrm{CuL}^{3}\left(\mathrm{NO}_{3}\right) \cdot \mathrm{MeOH}$	51.5	6.0	8.0	3 270(br),	1385 s
	(51.5)	(6.1)	(8.2)	3220 (sh)	
$\mathrm{NiL}^{3}\left(\mathrm{NO}_{3}\right)$	53.4	5.4	9.2	3300 (sp),	1380 s
	(53.0)	(5.7)	(8.8)	3 235(sp)	
$\mathrm{CoL}^{3}\left(\mathrm{NO}_{3}\right) \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$	49.7	6.0	8.4	3 270(sh)	1380 s
	(50.1)	(6.0)	(8.3)		
$\mathrm{ZnL}^{3}\left(\mathrm{NO}_{3}\right)$	51.9	5.7	8.9	3 260(br),	1390 s
	(52.2)	(5.6)	(8.7)	3 240(sh)	
$\mathrm{CdL}^{3}\left(\mathrm{NO}_{3}\right)$	47.4	4.9	7.9	3290 (sp)	1390 s
	(47.6)	(5.1)	(7.9)		
$\mathrm{CuL}^{4}\left(\mathrm{NO}_{3}\right) \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$	52.3	6.4	8.2	3250 (sh)	1380 s
	(52.3)	(6.0)	(8.3)		
$\mathrm{CdL}^{4}\left(\mathrm{NO}_{3}\right)$	49.0	5.6	7.3	3290	1380 s
	(48.6)	(5.4)	(7.7)		
$\mathrm{CuL}^{5}\left(\mathrm{NO}_{3}\right)$	54.3	6.2	8.1	3280 ,	1380 s
	(54.3)	(6.1)	(8.2)	3260 (sh)	
$\mathrm{CuL}^{7}\left(\mathrm{NO}_{3}\right) \cdot 2 \mathrm{H}_{2} \mathrm{O}$	53.9	6.0	7.4	3250 (br)	1380 s
	(54.7)	(5.9)	(7.1)		
$\mathrm{NiL}^{7}\left(\mathrm{NO}_{3}\right) \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$	57.5	6.2	7.5	3300 (sp)	1380 s
	(57.8)	(5.8)	(7.5)		
$\mathrm{CoL}^{7}\left(\mathrm{NO}_{3}\right)$	58.7 (58.6)	5.2 (5.8)	7.4	3260 (sh)	1 380s
	(58.6)	(5.8)	(7.6)		
$\mathrm{ZnL}^{7}\left(\mathrm{NO}_{3}\right)$	57.8	5.9	7.6	3230 (sh)	1380 s (br)
	(58.0)	(5.6)	(7.5)		
$\mathrm{CuL}^{6}\left(\mathrm{NO}_{3}\right)$	49.9	5.5	8.6	3250 (br)	$1390 s(b r)$
	(50.7)	(5.5)	(8.5)		
$\mathrm{NiL}^{6}\left(\mathrm{NO}_{3}\right)$	50.9	5.5	8.5	3300 (sp)	1390
	(51.2)	(5.5)	(8.5)		
$\mathrm{CoL}^{6}\left(\mathrm{NO}_{3}\right) \cdot \mathrm{H}_{2} \mathrm{O}$	48.5	5.3	8.7	3260 (sp)	1380 s
	(49.4)	(5.7)	(8.2)		
$\mathrm{ZnL}^{6}\left(\mathrm{NO}_{3}\right)$	49.8	5.5	8.6	3 280(sh),	1390 s
	(50.6)	(5.5)	(8.4)	$3255(\mathrm{sp})$	
$\mathrm{CdL}^{6}\left(\mathrm{NO}_{3}\right) \cdot \mathrm{H}_{2} \mathrm{O}$	43.9	5.3	7.5	3280 (br)	1380
	(44.7)	(5.2)	(7.4)		
$\begin{aligned} & \mathrm{Ni}\left(\mathrm{HL}^{8}\right)\left(\mathrm{NO}_{3}\right)_{2} . \\ & \mathrm{H}_{2} \mathrm{O} \end{aligned}$	49.2	4.8	12.0	3250 (sh)	1380 (br)
	(47.6)	(4.8)	(11.6)		
$\mathrm{NiL}^{8}\left(\mathrm{NO}_{3}\right) \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$	54.1	5.2	10.7	3280 (sh)	1380 s
	(53.9)	(5.1)	(10.5)		
$\mathrm{CoL}^{8}\left(\mathrm{NO}_{3}\right) \cdot \mathrm{H}_{2} \mathrm{O}$	52.4	5.1	10.7	3250 w (sh)	1385 s
	(53.0)	(5.2)	(10.3)		

CHCl_{3} was removed under vacuum to give a brown viscous oil which was shown by f.a.b.m.s. to be a mixture of the $1+1$ and $2+2$ macrocycles. These were separated by m.p.l.c. using a silica gel column ($40 \mathrm{~cm} \times 30 \mathrm{~mm}$). A typical run involved the injection of a sample of the product mixture ($0.3-0.8 \mathrm{~g}$) in methanol ($8 \mathrm{~cm}^{3}$) containing 0.3% ammonia. Under a pressure of $70 \mathrm{lbf} \mathrm{in}^{-2}$ separation was achieved in $3-8 \mathrm{~h}$. Continuous monitoring of the column effluent with a u.v. detector (245 nm) ensured clean separation of the fractions. Both products were obtained as white powders on slow evaporation of the

Table 10. F.a.b. mass spectra of the metal nitrate complexes

Complex	m / z, Assignment, relative intensity (\%)
$\mathrm{CuL}^{1}\left(\mathrm{NO}_{3}\right) \cdot \mathrm{H}_{2} \mathrm{O}$	$390,\left[\mathrm{CuL}^{1}\right]^{+}, 100 ; 453,\left[\mathrm{CuL}^{1}\left(\mathrm{NO}_{3}\right)+\mathrm{H}\right]^{+}, 12$; $842\left[\mathrm{Cu}_{2} \mathrm{~L}^{1}{ }_{2}\left(\mathrm{NO}_{3}\right)\right]^{+}, 3 ; 1296$, $\left[\mathrm{Cu}_{3} \mathrm{~L}^{1}{ }_{3}\left(\mathrm{NO}_{3}\right)_{2}\right]^{+}, 10$
$\mathrm{NiL}^{1}\left(\mathrm{NO}_{3}\right) \cdot \mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & 385,\left[\mathrm{NiL}^{1}\right]^{+}, 60 ; 443\left[\mathrm{NiL}^{1}\left(\mathrm{NO}_{3}\right)+\mathrm{H}\right]^{+}, 100 ; \\ & 832,\left[\mathrm{Ni}_{2} \mathrm{~L}^{2}{ }_{2}\left(\mathrm{NO}_{3}\right)\right]^{+}, 8 \end{aligned}$
$\mathrm{CuL}^{2}\left(\mathrm{NO}_{3}\right) \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$	$404,\left[\mathrm{CuL}^{2}\right]^{+}, 100 ; 870,\left[\mathrm{Cu}_{2} \mathrm{~L}^{2}{ }_{2}\left(\mathrm{NO}_{3}\right)\right]^{+}, 8$
$\mathrm{NiL}^{2}\left(\mathrm{NO}_{3}\right) \cdot \mathrm{H}_{2} \mathrm{O}$	$399,\left[\mathrm{NiL}^{2}\right]^{+}, 100 ; 860,\left[\mathrm{Ni}_{2} \mathrm{~L}^{2}{ }_{2}\left(\mathrm{NO}_{3}\right)\right]^{+}, 18$
$\mathrm{ZnL}^{2}\left(\mathrm{NO}_{3}\right) \cdot \mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & 405,\left[\mathrm{ZnL}^{2}\right]^{+}, 100 ; 872,\left[\mathrm{Zn}_{2} \mathrm{~L}^{2}{ }_{2}\left(\mathrm{NO}_{3}\right)\right]^{+}, 18 ; \\ & 1340,\left[\mathrm{Zn}_{3} \mathrm{~L}^{2}\left(\mathrm{NO}_{3}\right)_{2}\right]^{+}, 7 \end{aligned}$
$\mathrm{CdL}^{2}\left(\mathrm{NO}_{3}\right) \cdot \mathrm{H}_{2} \mathrm{O}$	453, $\left[\mathrm{CdL}^{2}\right]^{+}, 100 ; 968,\left[\mathrm{Cd}_{2} \mathrm{~L}^{2}{ }_{2}\left(\mathrm{NO}_{3}\right)\right]^{+}, 4$
$\mathrm{CuL}^{3}\left(\mathrm{NO}_{3}\right) \cdot \mathrm{MeOH}$	$\begin{aligned} & 419,\left[\mathrm{CuL}^{3}\right]^{+}, 100 ; 901,\left[\mathrm{Cu}_{2} \mathrm{~L}^{3}{ }_{2}\left(\mathrm{NO}_{3}\right)\right]^{+}, 10 ; \\ & 1025,\left[\mathrm{Cu}_{3} \mathrm{~L}^{3}{ }_{2}\left(\mathrm{NO}_{3}\right)_{2}\right]^{+}, 10 ; 1380, \\ & {\left[\mathrm{Cu}_{3} \mathrm{~L}^{3}{ }_{3}\left(\mathrm{NO}_{3}\right)_{2}\right]^{+}, 12} \end{aligned}$
$\mathrm{NiL}^{3}\left(\mathrm{NO}_{3}\right)$	$413,\left[\mathrm{NiL}^{3}\right]^{+}, 100 ; 888,\left[\mathrm{Ni}_{2} \mathrm{~L}^{3}{ }_{2}\left(\mathrm{NO}_{3}\right)\right]^{+}, 10$; $1072,\left[\mathrm{Ni}_{3} \mathrm{~L}^{3}{ }_{2}\left(\mathrm{NO}_{3}\right)_{3}\right]^{+}, 18$
$\mathrm{CoL}^{3}\left(\mathrm{NO}_{3}\right) \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$	$414,\left[\mathrm{CoL}^{3}\right]^{+}, 100 ; 890,\left[\mathrm{Co}_{2} \mathrm{~L}^{3}{ }_{2}\left(\mathrm{NO}_{3}\right)\right]^{+}, 8$
$\mathrm{ZnL}^{3}\left(\mathrm{NO}_{3}\right)$	$\begin{aligned} & 419,\left[\mathrm{ZnL}^{3}\right]^{+}, 100 ; 904,\left[\mathrm{Zn}_{2} \mathrm{~L}^{3}{ }_{2}\left(\mathrm{NO}_{3}\right)\right]^{+}, 9 ; \\ & 1383,\left[\mathrm{Zn}_{3} \mathrm{~L}^{3}{ }_{3}\left(\mathrm{NO}_{3}\right)_{2}\right]^{+}, 8 \end{aligned}$
$\mathrm{CdL}^{3}\left(\mathrm{NO}_{3}\right)$	$467,\left[\mathrm{CdL}^{3}\right]^{+}, 100 ; 996,\left[\mathrm{Cd}_{2} \mathrm{~L}^{3}{ }_{2}\left(\mathrm{NO}_{3}\right)\right]^{+}, 11$; $1527,\left[\mathrm{Cd}_{3} \mathrm{~L}^{3}{ }_{3}\left(\mathrm{NO}_{3}\right)_{2}\right]^{+}, 15 ; 1772$, $\left[\mathrm{Cd}_{2} \mathrm{~L}^{3}{ }_{4}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{3}\right]^{+}, 12$
$\mathrm{CuL}^{4}\left(\mathrm{NO}_{3}\right) \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & 434,\left[\mathrm{CuL}^{4}\right]^{+}, 100 ; 923,\left[\mathrm{Cu}_{2} \mathrm{~L}^{4}{ }_{2}\left(\mathrm{NO}_{3}\right)\right]^{+}, 2 ; \\ & 1055,\left[\mathrm{Cu}_{3} \mathrm{~L}_{2}{ }_{2}\left(\mathrm{NO}_{3}\right)_{2}\right]^{2+}, 2 ; 1424, \\ & {\left[\mathrm{Cu}_{3} \mathrm{~L}^{4}{ }_{3}\left(\mathrm{NO}_{3}\right)_{2}\right]^{+}, 6} \end{aligned}$
$\mathrm{CdL}^{4}\left(\mathrm{NO}_{3}\right)$	482, $\left[\mathrm{CdL}^{4}\right]^{+}, 100 ; 1024,\left[\mathrm{Cd}_{2} \mathrm{~L}^{4}{ }_{2}\left(\mathrm{NO}_{3}\right)\right]^{+}, 4$
$\mathrm{CuL}{ }^{5}\left(\mathrm{NO}_{3}\right)$	$\begin{aligned} & 447,\left[\mathrm{CuL}^{5}\right]^{+}, 100 ; 954,\left[\mathrm{Cu}_{2} \mathrm{~L}^{5}{ }_{2}\left(\mathrm{NO}_{3}\right)\right]^{+}, 81 ; \\ & 1464,\left[\mathrm{Cu}_{3} \mathrm{~L}^{5}{ }_{3}\left(\mathrm{NO}_{3}\right)_{2}\right]^{+}, 10 \end{aligned}$
$\mathrm{CuL}^{7}\left(\mathrm{NO}_{3}\right) \cdot 2 \mathrm{H}_{2} \mathrm{O}$	494, $\left[\mathrm{CuL}^{7}\right]^{+}, 100 ; 1606,\left[\mathrm{Cu}_{3} \mathrm{~L}^{7}{ }_{3}\left(\mathrm{NO}_{3}\right)_{2}\right]^{+}, 3$
$\mathrm{NiL}^{7}\left(\mathrm{NO}_{3}\right) \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$	$489,\left[\mathrm{NiL}^{7}\right]^{+}, 100 ; 921,\left[\mathrm{NiL}^{7}{ }_{2}+\mathrm{H}\right]^{+}, 65 ; 984$, $\left[\mathrm{NiL}^{7}{ }_{2}\left(\mathrm{NO}_{3}\right)+\mathrm{H}_{2}\right]^{+}, 8 ; 1040$, $\left[\mathrm{Ni}_{2} \mathrm{~L}^{7}{ }_{2}\left(\mathrm{NO}_{3}\right)\right]^{+}, 6$
$\mathrm{CoL}^{7}\left(\mathrm{NO}_{3}\right)$	$\begin{aligned} & 490,\left[\mathrm{CoL}^{7}\right]^{+}, 55 ; 922,\left[\mathrm{CoL}^{7}{ }_{2}+\mathrm{H}\right]^{+}, 100 \\ & 1042,\left[\mathrm{Co}_{2} \mathrm{~L}_{2}^{7}\left(\mathrm{NO}_{3}\right)\right]^{+}, 82 ; 1104 \\ & {\left[\mathrm{Co}_{2} \mathrm{~L}^{7}{ }_{2}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}\right]^{+}, 84} \end{aligned}$
$\mathrm{ZnL}^{7}\left(\mathrm{NO}_{3}\right)$	$\begin{aligned} & 495,\left[\mathrm{ZnL}^{7}\right]^{+}, 100 ; 1052,\left[\mathrm{Zn}_{2} \mathrm{~L}^{7}{ }_{2}\left(\mathrm{NO}_{3}\right)\right]^{+}, 18 ; \\ & 1609,\left[\mathrm{Zn}_{3} \mathrm{~L}^{7}{ }_{3}\left(\mathrm{NO}_{3}\right)_{2}\right]^{+}, 10 \end{aligned}$
$\mathrm{CuL}{ }^{6}\left(\mathrm{NO}_{3}\right)$	$\begin{aligned} & 435,\left[\mathrm{CuL}^{6}\right]^{+}, 100 ; 497,\left[\mathrm{CuL}^{6}\left(\mathrm{NO}_{3}\right)+\mathrm{H}\right]^{+}, \\ & 15 ; 932,\left[\mathrm{Cu}_{2} \mathrm{~L}^{6}{ }_{2}\left(\mathrm{NO}_{3}\right)\right]^{+}, \quad 3 ; 1428, \\ & {\left[\mathrm{Cu}_{3} \mathrm{~L}^{6}\left(\mathrm{NO}_{3}\right)_{2}\right]^{+}, 6} \end{aligned}$
$\mathrm{NiL}^{6}\left(\mathrm{NO}_{3}\right)$	$429,\left[\mathrm{NiL}^{6}\right]^{+}, 100 ; 492,\left[\mathrm{NiL}^{6}\left(\mathrm{NO}_{3}\right)+\mathrm{H}\right]^{+}, 12$; $801,\left[\mathrm{NiL}^{6}{ }_{2}+\mathrm{H}\right]^{+}, 14 ; 864$, $\left[\mathrm{NiL}^{6}{ }_{2}\left(\mathrm{NO}_{3}\right)+\mathrm{H}_{2}\right]^{+}, 6$
$\mathrm{CoL}^{6}\left(\mathrm{NO}_{3}\right) \cdot \mathrm{H}_{2} \mathrm{O}$	$430,\left[\mathrm{CoL}^{6}\right]^{+}, 100 ; 801,\left[\mathrm{CoL}^{6}{ }_{2}+\mathrm{H}\right]^{+}, 12$; 922, $\left[\mathrm{Co}_{2} \mathrm{~L}^{6}{ }_{2}\left(\mathrm{NO}_{3}\right)\right]^{+}, 18 ; 985$, $\left[\mathrm{Co}_{2} \mathrm{~L}^{6}{ }_{2}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}\right]^{+}, 38$
$\mathrm{ZnL}{ }^{6}\left(\mathrm{NO}_{3}\right)$	$435,\left[\mathrm{ZnL}^{6}\right]^{+}, 100$; 932, $\left[\mathrm{Zn}_{2} \mathrm{~L}^{6}{ }_{2}\left(\mathrm{NO}_{3}\right)\right]^{+}, 4$
$\mathrm{CdL}^{6}\left(\mathrm{NO}_{3}\right) \cdot \mathrm{H}_{2} \mathrm{O}$	$483,\left[\mathrm{CdL}^{6}\right]^{+}, 100 ; 1029,\left[\mathrm{Cd}_{2} \mathrm{~L}^{6}{ }_{2}\left(\mathrm{NO}_{3}\right)\right]^{+}, 6$
$\begin{aligned} & \mathrm{Ni}\left(\mathrm{HL}^{8}\right)\left(\mathrm{NO}_{3}\right)_{2} \\ & \mathrm{H}_{2} \mathrm{O} \end{aligned}$	$462,\left[\mathrm{NiL}^{8}\right]^{+}, 100 ; 525,\left[\mathrm{NiL}^{8}\left(\mathrm{NO}_{3}\right)+\mathrm{H}\right]^{+}, 20$
$\mathrm{NiL}^{8}\left(\mathrm{NO}_{3}\right) \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$	$462,\left[\mathrm{NiL}^{8}\right]^{+}, 100 ; 525,\left[\mathrm{NiL}^{8}\left(\mathrm{NO}_{3}\right)+\mathrm{H}\right]^{+}, 18 ;$ $867,\left[\mathrm{NiL}^{8}{ }_{2}+\mathrm{H}\right]^{+}, 15 ; 986,\left[\mathrm{Ni}_{2} \mathrm{~L}^{8}{ }_{2}\left(\mathrm{NO}_{3}\right)\right]^{+}, 24$
$\mathrm{CoL}^{8}\left(\mathrm{NO}_{3}\right) \cdot \mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & 463,\left[\mathrm{CoL}^{8}\right]^{+}, 100 ; 868,\left[\mathrm{CoL}^{8}{ }_{2}+\mathrm{H}\right]^{+}, 10 \\ & 1393,\left[\mathrm{Co}_{2} \mathrm{~L}_{3}^{8}\left(\mathrm{NO}_{3}\right)+\mathrm{H}\right]^{+}, 3 \end{aligned}$

solvent. HL^{2} : m.p. $54-56{ }^{\circ} \mathrm{C}$ (Found: C, $70.0 ; \mathrm{H}, 7.4 ; \mathrm{N}, 8.0$. $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires $\mathrm{C}, 70.2 ; \mathrm{H}, 7.7 ; \mathrm{N}, 8.2 \%$). M.s. has highest peak at $m / z 343\left[\mathrm{HL}^{2}+\mathrm{H}\right]^{+} . \mathrm{H}_{2} \mathrm{~L}^{9}:$ m.p. $50-52{ }^{\circ} \mathrm{C}$ (Found: C, 70.3; $\mathrm{H}, 7.4 ; \mathrm{N}, 8.6 . \mathrm{C}_{40} \mathrm{H}_{52} \mathrm{~N}_{4} \mathrm{O}_{6}$ requires C, 70.2; $\mathrm{H}, 7.7 ; \mathrm{N}$, 8.2%). M.s. has highest peak at $m / z 685\left[\mathrm{H}_{2} \mathrm{~L}^{9}+\mathrm{H}\right]^{+}$.

$$
\mathrm{HL}^{1}: \text { m.p. } 156-157^{\circ} \mathrm{C}\left(\text { lit. },{ }^{20} 156^{\circ} \mathrm{C}\right) .
$$

HL^{3} : m.p. $130-132^{\circ} \mathrm{C}$ (Found: C, $70.1 ; \mathrm{H}, 7.8 ; \mathrm{N}, 7.9$. $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires $\mathrm{C}, 70.8 ; \mathrm{H}, 7.9 ; \mathrm{N}, 7.9 \%$). M.s. has highest peak at $m / z 357\left[\mathrm{HL}^{3}+\mathrm{H}\right]^{+}$. N.m.r. $\left(\mathrm{CDCl}_{3}\right):{ }^{1} \mathrm{H}$, $\delta 7.24(\mathrm{t}, 2 \mathrm{H}$, aromatic), $7.22(\mathrm{~d}, 2 \mathrm{H}$, aromatic), $6.91(\mathrm{t}, 2 \mathrm{H}$, aromatic), $6.86\left(\mathrm{~d}, 2 \mathrm{H}\right.$, aromatic), $4.07\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.95$ [m, $1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})], 3.80\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right), 2.73[\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{NHCH}_{2} \mathrm{CH}(\mathrm{OH})\right]$, and $2.07\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right) ;{ }^{13} \mathrm{C}, \delta$

(3)

(III)
157.2, 130.8, 128.6, 128.3, 120.6, 110.9 (aromatic), $68.1(\mathrm{HCOH}$), $67.1\left(\mathrm{CH}_{2} \mathrm{O}\right), 52.8,49.8\left(\mathrm{CH}_{2} \mathrm{NH}\right)$, and 26.6 p.p.m. $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$.
HL^{4} : m.p. $92-94^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 71.4 ; \mathrm{H}, 8.1 ; \mathrm{N}, 7.6$. $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires $\mathrm{C}, 71.3 ; \mathrm{H}, 8.2 ; \mathrm{N}, 7.6 \%$). M.s. has highest peak at $m / z 371\left[\mathrm{HL}^{4}+\mathrm{H}\right]^{+}$. N.m.r. $\left(\mathrm{CDCl}_{3}\right):{ }^{1} \mathrm{H}$, $\delta 7.22(\mathrm{t}, 2 \mathrm{H}$, aromatic), $7.20(\mathrm{~d}, 2 \mathrm{H}$, aromatic), $6.89(\mathrm{t}, 2 \mathrm{H}$, aromatic), $6.87\left(\mathrm{~d}, 2 \mathrm{H}\right.$, aromatic), $4.06\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.85[\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})], 3.80\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right), 2.71[\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{NHCH}_{2} \mathrm{CH}(\mathrm{OH})\right], 1.90\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$, and $1.80(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}$); ${ }^{13} \mathrm{C}, \delta 157.3,130.8,128.7,128.0,121.1$, 111.0 (aromatic), $68.0(\mathrm{HCOH}), 65.6\left(\mathrm{CH}_{2} \mathrm{O}\right), 52.8,49.0$ $\left(\mathrm{CH}_{2} \mathrm{NH}\right), 27.8\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$, and 21.8 p.p.m. $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$.
HL^{5} : m.p. $62-6{ }^{\circ} \mathrm{C}$ (Found: C, 71,2; H, 8.4; N, 6.9. $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires C, $71.8 ; \mathrm{H}, 8.4 ; \mathrm{N}, 7.3 \%$). M.s. has highest peak at $m / z 385\left[\mathrm{HL}^{5}+\mathrm{H}\right]^{+}$. N.m.r. $\left(\mathrm{CDCl}_{3}\right):{ }^{1} \mathrm{H}$, $\delta 7.22(\mathrm{t}, 2 \mathrm{H}$, aromatic), $7.20(\mathrm{~d}, 2 \mathrm{H}$, aromatic), $6.89(\mathrm{t}, 2 \mathrm{H}$, aromatic), 6.86 (d, 2 H , aromatic), $4.02\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.93[\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})], 3.79\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right), 2.67[\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{NHCH}_{2} \mathrm{CH}(\mathrm{OH})\right], 1.86\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$, and $1.64(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}$); ${ }^{13} \mathrm{C}, \delta 157.3,130.5,128.5,128.2,120.3,111.2$ (aromatic), $68.7(\mathrm{HCOH}), 67.6\left(\mathrm{CH}_{2} \mathrm{O}\right), 53.1,49.7\left(\mathrm{CH}_{2} \mathrm{NH}\right)$, $29.4\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$, and 26.5 p.p.m. $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$.
HL^{6} : m.p. $108^{\circ} \mathrm{C}$ (Found: C, $67.6 ; \mathrm{H}, 7.4 ; \mathrm{N}, 7.2$. $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires C, 67.7; $\mathrm{H}, 7.9 ; \mathrm{N}, 7.5 \%$). M.s. has highest peak at $m / z 373\left[\mathrm{HL}^{6}+\mathrm{H}\right]^{+}$. N.m.r. $\left(\mathrm{CDCl}_{3}\right):{ }^{1} \mathrm{H}, \delta 7.24(\mathrm{t}$, 2 H , aromatic), 7.22 (d, 2 H , aromatic), $6.92(\mathrm{t}, 2 \mathrm{H}$, aromatic), $6.86\left(\mathrm{~d}, 2 \mathrm{H}\right.$, aromatic), $4.20\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.98(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{OCH}_{2}$), $3.96(\mathrm{~m}, 1 \mathrm{H}, \mathrm{HCOH}), 3.83\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)$, and $2.69\left[\mathrm{~m}, 4 \mathrm{H}, \mathrm{NHCH}_{2}(\mathrm{OH})\right] ;{ }^{13} \mathrm{C}, \delta 157.0,130.8,128.5$, 128.4, 120.0, 111.2 (aromatic), 70.4, $67.6\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 67.1$ $(\mathrm{HCOH}), 52.4$, and 49.4 p.p.m. $\left(\mathrm{CH}_{2} \mathrm{NH}_{2}\right)$.
HL^{7} : m.p. 133-136 ${ }^{\circ} \mathrm{C}$ (Found: C, 74.8; H, 7.2; N, 6.3. $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires $\mathrm{C}, 75.0 ; \mathrm{H}, 7.5 ; \mathrm{N}, 6.5 \%$). M.s. has highest peak at $m / z 433\left[\mathrm{HL}^{7}+\mathrm{H}\right]^{+}$. N.m.r. $\left(\mathrm{CDCl}_{3}\right):{ }^{1} \mathrm{H}, \delta 7.43$ (s, $1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}$), $7.26(\mathrm{t}, 2 \mathrm{H}$, aromatic), $7.22(\mathrm{~d}, 2 \mathrm{H}$, aromatic), $7.11\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.0-6.9(\mathrm{~m}, 4 \mathrm{H}$, aromatic), $5.00(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{OCH}_{2}\right), 3.76\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right), 3.62[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{OH})], 2.50$ [$\left.\left.\mathrm{m}, 4 \mathrm{H}, \mathrm{NHCH} \mathrm{NH}_{2} \mathrm{OH}\right)\right]$, and $2.36\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}, \delta 157.4$, $136.3,132.8,132.5,130.7,129.0,128.9,128.6,112.0$ (aromatic), $68.3\left(\mathrm{CH}_{2} \mathrm{O}\right), 68.1(\mathrm{CHOH}), 52.6,49.6\left(\mathrm{CH}_{2} \mathrm{NH}\right)$, and 18.4 p.p.m. $\left(\mathrm{CH}_{3}\right)$.

Table 11. Metal complexes of a $2+2$ macrocycle, $\mathbf{H}_{2} \mathbf{L}^{10}$

Complex	Analysis* (\%)				F.a.b. mass spectral peaks (m / z)	I.r. bands (cm^{-1})		
					Secondary			
	C	H	N	Cl		$\begin{gathered} \text { amine } \mathrm{N}-\mathrm{H} \\ \text { stretch } \end{gathered}$	Perchlorate	
$\underset{(\text { Lilac })}{\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{~L}^{10}\right)\left(\mathrm{ClO}_{4}\right)_{2}}$	$\begin{gathered} 51.8 \\ (52.0) \end{gathered}$	$\begin{gathered} 5.8 \\ (5.8) \end{gathered}$	$\begin{gathered} 5.5 \\ (5.8) \end{gathered}$	$\begin{gathered} 7.7 \\ (7.3) \end{gathered}$		$\begin{aligned} & 769,\left[\mathrm{Ni}\left(\mathrm{HL}_{10}\right)\right]^{+}, \\ & 869,\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{~L}^{10}\right)\left(\mathrm{ClO}_{4}\right)\right]^{+} \end{aligned}$	3290	1110 s (br), 630(sp)
$\begin{aligned} & \mathrm{Co}\left(\mathrm{H}_{2} \mathrm{~L}^{10}\right)\left(\mathrm{ClO}_{4}\right)_{2} \\ & (\text { Pink }) \end{aligned}$	$\begin{gathered} 52.2 \\ (52.0) \end{gathered}$	$\begin{gathered} 6.0 \\ (5.8) \end{gathered}$	$\begin{gathered} 5.7 \\ (5.8) \end{gathered}$	$\begin{gathered} 7.4 \\ (7.3) \end{gathered}$	$\left.\left.\begin{array}{l} 770,\left[\mathrm{Co}\left(\mathrm{HL}^{10}\right)\right]^{+}, \\ 870,\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{~L}^{10}\right)(\mathrm{ClO}\right. \\ 4 \end{array}\right)\right]^{+} .$	3280	1100s, $620(\mathrm{sp}$)	
$\begin{gathered} \mathrm{Cd}\left(\mathrm{H}_{2} \mathrm{~L}^{10}\right) \mathrm{Cl}_{2} \\ \text { (Off-white) } \end{gathered}$	$\begin{gathered} 55.7 \\ (56.3) \end{gathered}$	$\begin{gathered} 6.4 \\ (6.3) \end{gathered}$	$\begin{gathered} 6.3 \\ (6.2) \end{gathered}$	$\begin{gathered} 8.8 \\ (7.9) \end{gathered}$	$\begin{aligned} & 823,\left[\mathrm{Cd}\left(\mathrm{HL}^{10}\right)\right]^{+} \\ & 861,\left[\mathrm{Cd}\left(\mathrm{H}_{2} \mathrm{~L}^{10}\right) \mathrm{Cl}\right]^{+} \end{aligned}$	3295 (sp)		
$\underset{(\text { White })}{\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{~L}^{10}\right)\left(\mathrm{ClO}_{4}\right)_{2}}$	$\begin{gathered} 51.2 \\ (51.6) \end{gathered}$	$\begin{gathered} 5.5 \\ (5.8) \end{gathered}$	$\begin{gathered} 5.5 \\ (5.7) \end{gathered}$	$\begin{gathered} 7.2 \\ (7.3) \end{gathered}$	$\begin{aligned} & 775,\left[\mathrm{Zn}\left(\mathrm{HL}^{10}\right)\right]^{+}, \\ & 875,\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{~L}^{10}\right)\left(\mathrm{ClO}_{4}\right)\right]^{+} \end{aligned}$	3 250(sh)	$1100 \mathrm{~s}(\mathrm{br}), 620(\mathrm{sp})$	
$\begin{gathered} \mathrm{Cu}_{2} \mathrm{~L}^{10}\left(\mathrm{ClO}_{4}\right)_{2} \\ \text { (Pale blue) } \end{gathered}$	$\begin{gathered} 48.7 \\ (48.7) \end{gathered}$	$\begin{gathered} 5.1 \\ (5.2) \end{gathered}$	$\begin{gathered} 5.3 \\ (5.4) \end{gathered}$	$\begin{gathered} 6.3 \\ (6.8) \end{gathered}$	$774,\left[\mathrm{Cu}\left(\mathrm{HL}^{10}\right)\right]^{+}$, 837, $\left[\mathrm{Cu}_{2} \mathrm{~L}^{10}\right]^{+}$, 937, $\left[\mathrm{Cu}_{2} \mathrm{~L}^{10}\left(\mathrm{ClO}_{4}\right)\right]^{+}$	3 280(br)	1 100s(br), 625(sp)	

HL^{8} : m.p. $180-181^{\circ} \mathrm{C}$ (Found: C, 70.5 ; H, 6.5; N, 9.9. $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires $\mathrm{C}, 71.1 ; \mathrm{H}, 6.7 ; \mathrm{N}, 10.4 \%$). M.s. has highest peak at $m /=406\left[\mathrm{HL}^{8}+\mathrm{H}\right]^{+}$. N.m.r. $\left(\mathrm{CDCl}_{3}\right):{ }^{1} \mathrm{H}$ $\delta 7.58\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}\right), 7.41\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}\right), 7.22(\mathrm{t}, 2 \mathrm{H}$, aromatic), 7.20 (d, 2 H , aromatic), $6.92(\mathrm{t}, 2 \mathrm{H}$, aromatic), 6.90 (d, 2 H , aromatic), $5.16\left(\mathrm{~d}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.9-3.8(\mathrm{~m}$, $\left.\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} / \mathrm{HCOH}\right)$, and $2.63\left[\mathrm{~m}, 4 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{CH}(\mathrm{OH})\right] ;{ }^{13} \mathrm{C}$, $\delta 156.6,156.5,137.2,130.3,128.5,128.3,121.0,120.2,111.7$ (aromatic $\left.\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}\right), 70.4\left(\mathrm{CH}_{2} \mathrm{O}\right), 66.4(\mathrm{CHOH}), 53.0$, and 49.6 p.p.m. $\left(\mathrm{CH}_{2} \mathrm{NH}\right)$.
$\mathrm{H}_{2} \mathrm{~L}^{10}$: m.p. 118-119 ${ }^{\circ} \mathrm{C}$ (Found: C, 70.4; H, 8.1; N, 8.1. $\mathrm{C}_{42} \mathrm{H}_{56} \mathrm{~N}_{4} \mathrm{O}_{6}$ requires $\mathrm{C}, 70.8 ; \mathrm{H}, 7.9 ; \mathrm{N}, 7.9 \%$). M.s. has highest peak at $m / z 713\left[\mathrm{H}_{2} \mathrm{~L}^{10}+\mathrm{H}\right]^{+}$. N.m.r. $\left(\mathrm{CDCl}_{3}\right):{ }^{1} \mathrm{H}, \delta 7.22(\mathrm{t}$, 4 H , aromatic), $7.12(\mathrm{~d}, 4 \mathrm{H}$, aromatic), $6.87(\mathrm{t}, 4 \mathrm{H}$, aromatic), 6.84 (d, 4 H , aromatic), $4.05\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.89[\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}(\mathrm{OH})], 3.80\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right), 2.83[\mathrm{~m}, 8 \mathrm{H}$, $\left.\mathrm{NHCH}_{2} \mathrm{CH}(\mathrm{OH})\right]$, and $2.04\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)$.
$\mathrm{H}_{2} \mathrm{~L}^{21}$: m.p. $131-133^{\circ} \mathrm{C}$ (Found: C, 71.4; H, 8.4; N, 7.3. $\mathrm{C}_{46} \mathrm{H}_{64} \mathrm{~N}_{4} \mathrm{O}_{6}$ requires C, $71.8 ; \mathrm{H}, 8.4 ; \mathrm{N}, 7.3 \%$). M.s. has highest peak at $m / z 769\left[\mathrm{H}_{2} \mathrm{~L}^{11}+\mathrm{H}\right]^{+}$. N.m.r. $\left(\mathrm{CDCl}_{3}\right):{ }^{1} \mathrm{H}, \delta 7.19(\mathrm{t}, 4$ H , aromatic), 7.14 (d, 4 H , aromatic), $6.86(\mathrm{t}, 4 \mathrm{H}$, aromatic), 6.82 (d, 4 H , aromatic), $3.97\left(\mathrm{t}, 8 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.8-3.7[\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CH}(\mathrm{OH}) / \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right], 2.50\left[\mathrm{~m}, 8 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{CH}(\mathrm{OH})\right], 1.85(\mathrm{~m}$, $\left.8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$, and $1.58\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$.

Mononuclear Complexes of $1+1$ Macrocycles.-The macrocycle (1 mmol) in hot methanol ($10 \mathrm{~cm}^{3}$) was added slowly to a stirred, boiling solution of the required metal salt (1 mmol) in methanol, n-butanol or methanol-acetonitrile (1:1) $\left(20 \mathrm{~cm}^{3}\right)$. The complex that precipitated was filtered off (in some cases it was necessary to concentrate the solution first) washed with methanol, and dried under vacuum.

Homodinuclear Copper(iI) Complexes of $1+1$ Macrocycles.The macrocycle (1 mmol) in hot methanol $\left(10 \mathrm{~cm}^{3}\right)$ was added to a stirred boiling solution of the required copper(II) halide (2.2 $\mathrm{mmol})$ in methanol $\left(20 \mathrm{~cm}^{3}\right)$. The complex that precipitated out on cooling was filtered off, washed with methanol, and dried under vacuum.

Metal Complexes of $2+2$ Macrocycles.-The macrocycle (0.5 mmol) in hot methanol $\left(20 \mathrm{~cm}^{3}\right.$) was added slowly to a stirred boiling solution of the required metal salt (1 mmol) in methanol ($20 \mathrm{~cm}^{3}$). The complex that precipitated was filtered off (it was necessary to concentrate the solution first in some cases) washed with methanol, and dried under vacuum.

[^1]$\mathrm{O}_{14}, M=1545.31$, crystallises from benzyl alcohol as dark green prisms, crystal dimensions $0.31 \times 0.23 \times 0.23 \mathrm{~mm}$, monoclinic, $a=13.460(15), b=14.608(16), c=17.096(8) \AA$, $\beta=96.227(9)^{\circ}, U=3342(5) \AA^{3}, D_{\mathrm{c}}=1.536 \mathrm{~g} \mathrm{~cm}^{-3}, Z=2$, space group $P 2_{1} / c\left(C_{2 h}^{5}\right.$, no. 14), Mo- K_{α} radiation $(\bar{\lambda}=0.71069$ $\AA), \mu\left(\mathrm{Mo}-K_{\alpha}\right)=14.85 \mathrm{~cm}^{-1}, F(000)=1591.72$.

Three-dimensional, room-temperature X-ray data were collected in the range $6.5<2 \theta<50^{\circ}$ on a Stoe Stadi-2 diffractometer by the omega scan method. The 3678 independent reflections for which $I / \sigma(I)>3.0$ were corrected for Lorentz and polarisation effects, and for absorption by Gaussian integration methods. The structure was solved by standard Patterson and Fourier techniques and refined by blockedcascade least-squares methods. Hydrogen atoms were placed in predicted positions with isotropic thermal parameters related to those of the supporting atoms, and refined in riding mode. A molecule of benzyl alcohol was found to be disordered in two interpenetrating sites and it was refined with occupancies of 0.64:0.36 with constrained geometry. The refinement converged at a final R of 0.0532 with allowance for the thermal anisotropy of all non-hydrogen atoms with the exception of those of the disordered benzyl alcohol. Unit weights were used throughout the refinement. Complex scattering factors were taken from the program package SHELXTL, ${ }^{22}$ as implemented on the Data General Nova 3 computer, which was used throughout the refinement.

Acknowledgements

We thank Mr. P. R. Ashton and Mr. I Staton for valuable discussions concerning f.a.b.m.s. and g.c., the S.E.R.C. for Awards (to D. J. W. and M. G. W.), and the S.E.R.C. and Royal Society for assistance in the purchase of the diffractometer and computing facilities.

References

1 Part 6, N. A. Bailey, D. E. Fenton, R. Moody, P. J. Scrimshire, E. Beloritzky, P. H. Fries, and J. M. Latour, J. Chem. Soc., Dalton Trans., 1988, 2817.
2 S. M. Nelson, Pure Appl. Chem., 1980, 52, 2461; D. E. Fenton, ihid., 1986, 58, 1437.
3 D. E. Fenton, B. P. Murphy, A. J. Leong, L. F. Lindoy, A. Bashall, and M. McPartlin, J. Chem. Soc., Dalton Trans., 1987, 2543.
4 N. A. Bailey, D. E. Fenton, R. Moody, C. O. Rodriguez de Barbarin, I. N. Sciambarella, J. M. Latour, D. Limosin, and V. McKee, J. Chem. Soc., Dalton Trans., 1987, 2519.
5 J. J. Grzybowski, P. H. Merrell, and F. L. Urbach, Inorg. Chem., 1978, 11, 3078.

6 L. P. Battaglia, A. Bonamartini Corradi, and A. Mangia, Inorg. Chim. Acta, 1980, 42, 191.
7 K. D. Karlin, R. W. Cruse, Y. Gultneh, J. C. Hayes, and J. Zubieta, J. Am. Chem. Soc., 1984, 106, 3372; T. N. Sorrell and A. S. Borovnik, J. Chem. Soc., Chem. Commun., 1984, 1489; V. McKee, M. Zvagulis, J. V. Dagdigian, M. G. Patch, and C. A. Reed, J. Am. Chem. Soc., 1984, 106, 1489; W. Mazurek, K. J. Berry, K. S. Murray, M. J. O'Connor, R. J. Snow, and G. A. Wedd, Inorg. Chem., 1982, 21, 3071.
8 H. Adams, N. A. Bailey, D. E. Fenton, R. Moody, and J. M. Latour, Inorg. Chim. Acta, 1987, 135, L1; K. D. Karlin, A. Rarooq, J. C. Hayes, B. I. Cohen, T. M. Rowe, E. Sinn, and J. Zubieta, Inorg. Chem., 1987, 26, 1271.
9 Y. Nishida and S. Kida, J. Chem. Soc., Dalton Trans., 1986, 2633.
10 W. E. Marsh, K. C. Patel, W. E. Hatfield, and D. J. Hodgson, Inorg. Chem., 1983, 22, 511.
11 G. Desijaru, H. R. Luss, and D. L. Smith, J. Am. Chem. Soc., 1978 100, 6375.
12 L. F. Lindoy, H. C. Lip, J. H. Rea, R. J. Smith, K. Henrick, M. McPartlin, and P. A. Tasker, Inorg. Chem., 1980, 19, 3360.

13 M. F. Rosenthal, J. Chem. Educ., 1973, 50, 331.

14 M. I. Bruce and M. J. Liddell, Appl. Organomet. Chem., 1987, 1, 191.

15 R. A. W. Johnstone, I. A. S. Lewis, and M. G. Rose, Tetrahedron, 1983, 39, 1597.
16 K. R. Adam, G. Anderegg, K. Henrick, A. J. Leong, L. F. Lindoy, H. C. Lip, M. McPartlin, R. J. Smith, and P. A. Tasker, Inorg. Chem., 1981, 20, 4048.
17 B. Wang and C. S. Chung, J. Chem. Soc., Dalton Trans., 1982, 2565.
18 E. E. Schweizer, C. J. Beringer, D. M. Crouse, R. A. Davies, and R. S. Logothesis, J. Org. Chem., 1969, 34, 207.
19 P. G. Grimsley, L. F. Lindoy, H. C. Lip, R. J. Smith, and J. T. Baker, Aust. J. Chem., 1977, 30, 2095.
20 L. G. Armstrong, P. G. Grimsley, L. F. Lindoy, H. C. Lip, V. A. Norris, and R. J. Smith, Inorg. Chem., 1978, 17, 2350.
21 L. G. Armstrong, and L. F. Lindoy, Inorg. Chem., 1975, 14, 1322.
22 G. M. Sheldrick, SHELXT System for Crystal Structure Solution, University of Göttingen, 1983, revision 4.

Received 21 st September 1988; Paper 8/03700K

[^0]: \dagger Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1989, Issue 1, pp. xvii-xx.

[^1]: X-Ray Crystallography:-Crystal data. $\mathrm{C}_{66} \mathrm{H}_{76} \mathrm{Cl}_{4} \mathrm{Cu}_{4} \mathrm{~N}_{4}-$

